
Hydra: A Block-Mapped Parallel
Flash Memory Solid-State Disk Architecture

Yoon Jae Seong, Eyee Hyun Nam, Jin Hyuk Yoon, Hongseok Kim, Jin-Yong Choi, Sookwan Lee,

Young Hyun Bae, Jaejin Lee, Member, IEEE, Yookun Cho, Member, IEEE, and

Sang Lyul Min, Member, IEEE

Abstract—Flash memory solid-state disks (SSDs) are replacing hard disk drives (HDDs) in mobile computing systems because of

their lower power consumption, faster random access, and greater shock resistance. We describe Hydra, a high-performance flash

memory SSD architecture that translates the parallelism inherent in multiple flash memory chips into improved performance, by means

of both bus-level and chip-level interleaving. Hydra has a prioritized structure of memory controllers, consisting of a single high-priority

foreground unit, to deal with read requests, and multiple background units, all capable of autonomous execution of sequences of high-

level flash memory operations. Hydra also employs an aggressive write buffering mechanism based on block mapping to ensure that

multiple flash memory chips are used effectively, and also to expedite the processing of write requests. Performance evaluation of an

FPGA implementation of the Hydra SSD architecture shows that its performance is more than 80 percent better than the best of the

comparable HDDs and SSDs that we considered.

Index Terms—Flash memory, flash translation layer (FTL), solid-state disk (SSD), storage system.

Ç

1 INTRODUCTION

FLASH memory is increasingly being used as a storage
medium in mobile devices because of its low power

consumption, fast random access, and high shock resis-
tance. Moreover, the density of flash memory chips has
doubled every year for the past 10 years and this trend is
expected to continue until 2012 [11]. Flash memory solid-
state disks (SSDs) provide an interface identical to hard disk
drives (HDDs), and are currently replacing HDDs in mobile
computing systems, such as ultramobile PCs (UMPCs) and
notebook PCs.

The type of flash memory used for bulk storage applica-
tions is NAND flash, which is organized into physical
blocks, each of which contains a set of pages that are accessed
by read and program operations [29]. HDDs allow data to be
overwritten directly, but flash memory cannot perform in-
place updating. Instead, writing is performed by a program
page operation, which must be preceded by an erase block
operation that sets all the bits in the target physical block to 1.
Moreover, there is an asymmetry in read and program
speeds—the read operation is much faster than the program
operation (20 �s versus 200 �s).

Operating systems use storage devices to provide file

systems and virtual memory, and it is usually assumed that

these devices have an HDD-like interface. In order for flash

memory to achieve wide acceptance as a storage device, it
has to emulate the functionality of HDDs. The software
layer that provides this emulation is called the flash
translation layer (FTL) [10]. It hides the peculiarities of
flash memory and gives the illusion of an HDD.

In this paper, we describe a flash memory SSD
architecture, called Hydra, that exploits the parallelism of
multiple NAND flash memory chips to enhance storage
system performance. The Hydra SSD architecture uses
various techniques to achieve this goal:

1. The disparity between the slow flash memory bus
(<40 MB/s) and the fast host interface (>150 MB/s)
is overcome by interleaving enough flash memory
buses so that their collective bandwidth meets or
exceeds that of the host interface. In addition to this
bus-level interleaving, chip-level interleaving hides
the flash read latency.

2. Multiple high-level flash memory controllers execute
sequences of high-level flash memory operations
without any intervention by the FTL. One of these
controllers is designated as the foreground unit and
has priority over the remaining controllers, called
background units. The foreground unit is used to
expedite the processing of host read requests for
which processes in the host system are waiting.

3. Aggressive write buffering expedites the processing
of host write requests. More importantly, it also
allows the parallelism in multiple flash memory
chips to be exploited by multiple background units
that perform materialization to flash memory in
parallel on different interleaved units.

The rest of this paper is organized as follows: The basics
of NAND flash memory and related work on FTL and solid-
state disks are reviewed in the next section. We then present

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010 905

. The authors are with the School of Computer Science and Engineering,
Seoul National University, Seoul 151-742, Korea.
E-mail: {yjsung, ehnam, hskim, jychoi, symin}@archi.snu.ac.kr,
{jhyoon, sklee}@ssrnet.snu.ac.kr, yhbae@mtron.net, jlee@cse.snu.ac.kr,
ykcho@snu.ac.kr.

Manuscript received 12 Feb. 2008; revised 11 July 2009; accepted 21 Aug.
2009; published online 2 Mar. 2010.
Recommended for acceptance by F. Lombardi.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-02-0067.
Digital Object Identifier no. 10.1109/TC.2010.63.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

the Hydra SSD architecture in Section 3. A prototype
implementation in FPGA and its performance evaluation
results are presented in Section 4. Finally, we conclude in
Section 5, and suggest some directions for future research.

2 BACKGROUND AND RELATED WORK

2.1 NAND Flash Memory

A NAND flash memory chip consists of a set of blocks,
each of which consists of a set of pages. Each page has a
data part that stores the user data and a spare part that
stores metadata associated with the user data. The size of
the data part is a multiple of the sector size (512 bytes), and
the size of the spare part is typically 16 bytes for each sector
in the data part. Currently, the most popular block size is
128 KB, consisting of 64 pages, each of 2 KB (a data part of
four sectors and a spare part of 64 bytes) [29], and this
configuration will be considered throughout this paper
although our technique does not rely on it.

Fig. 1 shows the four major operations provided by a
typical low-level flash memory controller. We will explain
these operations in detail using the timings of the Samsung
K9K8G08U0M 8 Gb NAND flash memory chip [29].

The erase block operation sets all the bits in a block to 1
and takes about 2 ms. As shown in Fig. 1, this operation is
initiated by an erase command that includes the address of
the block to be erased. After the erase is complete, a status
check command is issued to detect any errors that might
have occurred during the operation.

The program page operation writes the data supplied to
a page that has been previously erased. It consists of three
phases. In the data transfer phase, the data to be written to
the target page is transferred at 40 MB/s over the flash
memory bus to the internal page buffer in the NAND flash
memory chip. Then, a program command is issued along
with the address of the target page. Programming takes
about 200 �s. When it is complete, a status check command
is issued (as in the erase block operation) to check for errors.

The read page operation reads a page from flash
memory. First, a read command is issued. This loads a
page into the memory’s internal page buffer, which takes

about 20 �s. Then, the data in the internal page buffer is
read out at 40 MB/s over the flash memory bus.

The copy-back page operation transfers data from one
page to another inside the chip while allowing a portion of
the data to be modified with externally supplied data. This
operation is much more efficient than moving the data out
of the chip and back in again, using a read page operation
followed by a program page operation. The copy-back page
operation is initiated by a read command that moves the
data to the internal page buffer. Then, the data correspond-
ing to the portion of the page to be modified is transferred
to the internal page buffer and a program command is
issued. Finally, the usual status check is performed.

NAND flash memory is subject to bit-flipping errors,
causing one or more bits in a page to be reversed. This can
be accommodated up to a point by external error-correction
logic. NAND flash memory can also tolerate a limited
number of bad physical blocks, which increases both the
yield and the lifetime of the chips. These bad blocks are
identified by a special mark at a designated location in each
block. Even the good blocks have a limited lifetime, which
necessitates a technique called wear-leveling [10] that tries
to even out the number of times that each block is erased.

2.2 Flash Translation Layer (FTL)

The flash translation layer (FTL) hides the peculiarities of
flash memory and emulates the functionality of an HDD. The
most important role of the FTL is to maintain a mapping
between the logical sector address used by the host system
and the physical flash memory address. This mapping can
either be at the page level [17], [33] or at the block level [2],
[16], [21], [22], [32]. In a page-level mapping, a logical page
can be mapped to any page in flash memory, making it more
flexible than block-level mapping, which will be explained
shortly. In a page-level mapping, the physical blocks in flash
memory form the same sort of log that we find in a log-
structured file system [27]. As data is written into the
memory, it is simply appended to the end of the log. When
the amount of free space in the log drops below a given
threshold, garbage collection is triggered: a physical block is
selected and all the valid pages (i.e., those whose correspond-
ing logical pages have not been overwritten) in that block are
copied to the end of the log. After the copy operation, the
whole block is erased and added to the list of free space. The
choice of block to be garbage-collected is based on a cost-
benefit analysis [8], [17], [27], [33].

Page-level mapping is flexible but suffers from a number
of problems. First, it requires a large amount of memory for
the mapping table. For example, a 16 GB flash memory
storage device requires a 32 MB mapping table, assuming that
each entry takes 4 bytes. Second, the overheads of garbage
collection increase sharply as the proportion of valid pages
increases, an effect that is well known in log-structured file
systems [33]. Finally, the performance of page-level mapping
on sequential reads is relatively poor since logically sequen-
tial sectors are physically scattered over the whole memory.

In a block-level mapping, each logical sector address is
divided into a logical block address and a sector address
within that logical block, and only the logical block address
is translated into a physical block address. Although block-
level mapping is free from the problems of page-level
mapping explained above, it requires extra flash memory

906 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010

Fig. 1. Low-level NAND flash memory operations.

operations when any pages in a logical block are modified.
For example, when there is a write request to a single page
in a logical block, that block must be remapped to a free
physical block; a program operation must then be per-
formed on the target page in the new physical block; and all
the other pages in that block have to be copied from the old
physical block to the new one.

The need for expensive copy operations in block-level
mapping can be reduced by various nonvolatile write
buffering schemes [2], [16], [21], [22], [32]. These buffering
schemes temporarily store the data from the host in physical
blocks called write buffer blocks before block remapping is
performed. Write buffering schemes can be classified as
block-level [2] or page-level [16], [21], [22], [32] depending
on where the newly written page is placed. In a block-level
write buffering scheme (e.g., [2]), a newly written page can
only be placed in the same page in a write buffer block. On
the other hand, in a page-level write buffering scheme, a
new page can be placed in any page in a write buffer block,
regardless of whether the association between logical blocks
and write buffer blocks is direct mapped [21], [32], set
associative [16], or fully associative [22].

2.3 Solid-State Disks (SSDs)

In the early days of flash memory, Wu and Zwaenepoel
proposed a mass storage system architecture called eNVy
[33]. This used page-level mapping and was equipped with
battery-backed SRAM for efficient write buffering. It was
designed to act as a main memory, whereas more recent SSDs
have been designed to replace HDDs, as their name suggests.

In hybrid HDDs [24], a small amount of flash memory is
added to an otherwise standard HDD, and it is used to buffer
write requests from the host so that the HDD can be spun
down for extended periods of time, improving both energy
efficiency and reliability. In addition, the flash memory can
cache frequently accessed sectors to improve the read
performance, and it can also be used to speed up boot-up
and resume by pinning the sectors required during these
operations.

Another hybrid approach is to combine flash memory
with nonvolatile RAM (NVRAM). In the Chameleon SSD
architecture [34], a small amount of NVRAM, such as
ferroelectric RAM [30], is combined with the flash memory
in an SSD. This allows the efficient handling of small random
writes which are otherwise slow because flash memory does
not allow in-place updates. In Chameleon, the bulk data is
stored in flash memory and the NVRAM contains the
nonvolatile data structures in the FTL, such as the mapping
table, that are subject to frequent small random writes.

Kgil et al. [18], [19] proposed a disk cache architecture
based on flash memory, in which the disk cache is partitioned
into a read cache and a write cache. This partitioning
improves the read performance of the disk cache as a whole
since the sectors cached in the read disk cache are much less
involved in garbage collection. Another interesting feature of
this disk cache architecture is a programmable error-
correction code (ECC) which is of adjustable strength so as
to allow a trade-off between performance and reliability.

Kim and Ahn [20] proposed an efficient buffer manage-
ment scheme called BPLRU for block mapping SSDs with
three significant features: block-level LRU that takes the size

of flash memory blocks into account; page padding to
convert scattered writes within a flash memory block into
one sequential write; and LRU compensation to optimize
the handling of sequential writes.

Prabhakaran et al. [26] proposed an extended, transac-
tional interface to SSDs with two alternative commit
protocols, simple cyclic commit and back pointer cyclic
commit, both of which are optimized to the unique
characteristics of flash memory such as the lack of in-place
updates and the spare part in each page.

An SSD architecture based on page-level mapping was
suggested by Birrel et al. [4], who described both volatile
and nonvolatile data structures, and the reconstruction of
the former from the latter during power-on. This recon-
struction process is relatively fast because the last page in
each block is reserved for summary information about the
other pages in that block; this obviates the need to scan all
the pages in the flash memory during power-on.

Agrawal et al. [1] discussed the many design compro-
mises required in building an SSD based on a page-mapping
FTL and evaluated those trade-offs using trace-driven
simulations. The trade-offs discussed include the choice of
mapping granularity, interleaved or parallel flash memory
operations, free block managements, and wear-leveling.
They also analyzed the effects of design parameters such as
cleaning thresholds and overprovisioning in a page-level
mapping FTL.

This paper presents Hydra, a new SSD architecture based
on block-level mapping. It extensively exploits the paralle-
lism inherent in multiple flash memory chips using various
design techniques such as interleaving, prioritized handling,
and volatile write buffering. They are well-known techni-
ques in many areas in computing, but Hydra adopts them in
the context of block-mapped flash memory SSD. The
evaluation based on a prototype implementation provides
comprehensive analysis on the effect of those techniques.

3 HYDRA SOLID-STATE DISK ARCHITECTURE

The Hydra SSD is based on block-level mapping and its
overall architecture is shown in Fig. 2. The SSD is connected
to a host system (e.g., a desktop PC or notebook PC) through
a device-side storage system protocol such as serial ATA
(S-ATA) [13] or serial attached SCSI (SAS) [15]. The
embedded processor together with the SRAM and code
storage provides the execution environment for the FTL.

The host system requires not only a high bandwidth that
meets or exceeds the maximum speed of its interface, but
also fast response times for both reads and writes. On the
other hand, the NAND flash memory is characterized by a
slow (<40 MB/s) bus. Hydra reconciles this mismatch by
the use of multiple flash memory buses whose collective
bandwidth meets or exceeds the maximum bandwidth of
the host interface. It also uses chip-level interleaving to
hide the flash read latency. Both bus-level and chip-level
interleaving are implemented by the MUX/DEMUX unit
shown in Fig. 2.

In Hydra, the set of flash memory chips that are related to
each other by the bus-level and chip-level interleaving is
called a superchip. Fig. 3 shows an example in which the
degrees of bus-level and chip-level interleaving are 4 and 2,

SEONG ET AL.: HYDRA: A BLOCK-MAPPED PARALLEL FLASH MEMORY SOLID-STATE DISK ARCHITECTURE 907

respectively. Like a (physical) block in a flash memory chip,

we can define a (physical) superblock in a superchip as a set of
physical blocks, one from each chip in the superchip. (This is
not to be confused with the term “superblock” used to refer
to the metadata describing a file system.) Similarly, a
superpage i of a superblock is formed from the ith pages of
all the constituent physical blocks in the superblock. As the

result of these definitions, the size of a superblock is the same
as that of physical block (128 KB), multiplied by the combined
bus-level and chip-level interleaving, and the size of a
superpage is determined in the same way. For example, in
the configuration shown in Fig. 3, the sizes of the superblock

and superpage are 1,024 KB and 16 KB, respectively.
To meet the maximum bandwidth requirement of host

write requests, Hydra employs volatile write buffering
using bulk RAM, which is typically implemented as high-
bandwidth DRAM. This write buffering reduces the
response time of host write requests, since a write request

received from the host by the inbound feeder in Fig. 2 can be
acknowledged as soon as all the data from the host has been
buffered to the bulk RAM. The data is later materialized to
flash memory by the multiple background units shown in

Fig. 2. Each of these units is capable of performing high-

level flash memory operations on superchips without any

intervention by the FTL.
To achieve the fast response time required for host read

requests, Hydra uses the foreground unit shown in Fig. 2.

This has a higher priority than the background units to

avoid the read requests being delayed by non-time-critical

materialization tasks performed by the background units.

This prioritized access to the bus is implemented by the

prioritized forwarder unit, also shown in Fig. 2.
To further reduce the response time of host read requests,

Hydra uses a foreground request synthesizer unit. This

contains hardware which automatically generates requests

to the foreground unit in response to a read request by the

host, using a mapping stored in a table in the bulk RAM.
Some of the sectors requested by a host read request may

already be write-buffered in the bulk RAM. Therefore,

Hydra uses the outbound feeder unit to read the write-

buffered data from the bulk RAM and the selective replacer

unit to make the required replacements to the sectors read

from flash memory.

908 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010

Fig. 2. Overall architecture of the Hydra SSD.

Fig. 3. Example of bus-level and chip-level interleaving. (a) Block size ¼ 128 KB, page size ¼ 2 KB. (b) Superblock size ¼ 1;024 KB, superpage size ¼
16 KB.

The CRC/ECC encoder and decoder units in Fig. 2 are
used to detect and correct possible bit-flipping errors in
flash memory.

The final component of note is the splitter unit, which is
used to forward data from flash memory either to the host
interface or to the bulk RAM.

Prefetching and read caching are not used in Hydra
because a preliminary study showed that the read speed
provided by flash memory is sufficiently high so that the
overhead of the software needed to implement these two
techniques would outweigh their benefits.

In the following sections, we detail the key features of the
Hydra SSD architecture, which are the bus-level and chip-
level interleaving mechanism, the write buffering techni-
que, the foreground and background units with their
interactions, and the wear-leveling technique.

3.1 Bus-Level and Chip-Level Interleaving

The Hydra SSD uses interleaving over multiple flash
memory buses to overcome the bandwidth limitation of the
flash memory bus. In the bus-level interleaving, sectors
within a superblock are distributed in a round-robin manner.
This is illustrated in Fig. 4a, without any chip-level
interleaving.

In the context of this organization, Fig. 5a shows the
timing of sequential read accesses from a superblock. In this
figure, the dependencies between flash memory operations
are indicated by arrows. For example, the arrow that starts
at the first flash read command addressed to chip 0 on
bus 0, and goes to the first data transfer from the same chip,
indicates that this data transfer is only possible after the
flash read latency of 20 �s.

In this example, flash read commands are initially issued
to all the chips belonging to the same superchip (i.e., chip 0
on all buses). After the flash read latency, data transfers
are made over the flash memory buses. With the sector
distribution shown in Fig. 4a, sectors are fetched from the
flash memory buses in a round-robin manner. For example,
sectors 0, 4, 8, and 12 are fetched from flash memory bus 0,
sectors 1, 5, 9, and 13 from flash memory bus 1, and so on.
The speed-matching buffer between the MUX/DEMUX unit

and each flash memory bus allows concurrent data transfers
from the flash memory bus while the MUX/DEMUX unit is
fetching data from the speed-matching buffer associated
with another flash memory bus. This bus-level interleaving
achieves an effective bandwidth of 160 MB/s (16 sectors in
50 �s) within a superpage by the use of four 40 MB/s flash
memory buses, as shown in Fig. 5a. However, there is an
unavoidable time interval between accesses to different
superpages, during which the flash memory buses are idle
(indicated by a black box in the figure) because the flash
read latency is not fully hidden by the data transfer time.

This idle time can be eliminated if we introduce chip-
level interleaving, as shown in Fig. 5b; this assumes that the
distribution of sectors within a superblock follows Fig. 4b.
In this example, a chip-level interleaving of degree two is
sufficient to hide the flash read latency. But if this latency is
longer, a higher degree of chip-level interleaving will be
required to hide it.

With the superblock organization, the logical sector
address from the host is divided into a logical superblock
address and a sector address within that superblock, as
shown in Fig. 6. The logical superblock is mapped to a
physical superblock consisting of a set of physical blocks,
one from each chip in a superchip. The required mapping is
provided by the block mapping table, which is stored in
both the bulk RAM and the flash memory. One restriction
in the mapping between logical and physical superblocks is
that a given logical superblock can only be remapped to a
physical superblock in the same superchip. This allows
Hydra to utilize the copy-back page operation which is
allowed only between pages in the same flash memory chip,
as we explained earlier. To enforce this restriction, we use
the lower i bits of a logical superblock address to index
the superchip, where i ¼ log2ðnÞ, and n is the number of
superchips. This means that a logical superblock is always
remapped to a physical superblock in the same superchip.
Fig. 6 shows a decomposition of the sector address within a
superblock for arbitrary bus-level and chip-level interleav-
ing, under the assumption that sectors within a superblock
are distributed across the constituent physical blocks in the
manner shown in Fig. 4.

SEONG ET AL.: HYDRA: A BLOCK-MAPPED PARALLEL FLASH MEMORY SOLID-STATE DISK ARCHITECTURE 909

Fig. 4. Distribution of sectors within a superblock. (a) Without chip-level interleaving. (b) With two-way chip-level interleaving.

3.2 Write Buffering

Hydra uses volatile write buffering to decouple the
materialization to flash memory from the processing of
host write requests. This requires a large portion of the bulk
RAM to be reserved as a sector buffer. The sector buffer
operates as a circular buffer, to which the sectors written by
the host are simply appended by the inbound feeder using
one of the ports provided by a multiport memory controller.

The information about the sectors in the sector buffer is
stored in the bulk RAM and is maintained for each logical
superblock by the FTL. This information is used when the

sectors are later materialized to flash memory. This
materialization is performed by the background units, and
it will be explained in detail in the next section. The
background materialization process is invoked in three
circumstances: when the free space in the sector buffer is
below a given threshold (called the flush high-watermark);
when the host sends a flush-cache request that requires
sectors write-buffered in volatile storage to be materialized
in nonvolatile storage; or when the number of superblocks
in the sector buffer rises above a given threshold.

3.3 Multiple High-Level Flash Memory Controllers

The Hydra SSD architecture uses multiple high-level flash
memory controllers, consisting of one foreground unit and
several background units. Each high-level controller is
capable of executing a sequence of high-level flash memory
operations, specified as a linked list of operation descrip-
tors. In Hydra, a high-level flash memory operation is
directed to a superchip, and for this reason, we refer to it as
a superchip operation. A linked list containing a sequence
of superchip operations is prepared by the FTL and the
address of the first descriptor is given to the high-level flash
memory controller through a command register.

A superchip operation operates on a physical superblock
and can span multiple superpages. For each superchip
operation, a high-level flash memory controller generates a
sequence of low-level flash memory operations, such as
those explained in Section 2.1, to perform the requested task

910 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010

Fig. 5. Timing of sequential read access with and without chip-level interleaving. (a) Sequential read access without chip-level interleaving.
(b) Sequential read access with two-way chip-level interleaving.

Fig. 6. Mapping from a logical sector address to a physical sector
address.

without any intervention by the FTL. We will now explain
the main superchip operations that can be performed by a
high-level flash memory controller.

3.3.1 High-Level Flash Memory Operations

Erase superchip. This operation erases all the physical
blocks in a physical superblock. It accepts the superchip
number and the physical block addresses of the physical
superblock to be erased. It then uses a sequence of low-level
erase block operations, as explained in Section 2.1, to
perform the erasure. If there is an error during one of the
low-level erase block operations, an interrupt is generated in
the FTL, which is also supplied with the identity of the
physical block which caused the error. This bad block is
mapped out and replaced by one of the spare physical blocks
which were reserved when the SSD was initialized. After this
replacement, the FTL retries the erase superchip operation.

Program superchip. This operation programs an arbitrary
number of sectors in a physical superblock. This superchip
operation takes five arguments: the superchip number, the
physical block addresses of the physical superblock, the
number of the start sector within the physical superblock, the
number of sectors to be programmed, and the start sector
buffer index from which the sectors to be programmed are
sequentially read. An error during a program superchip
operation is handled in a similar manner to an error during
an erase superchip operation, except that valid sectors in the
remapped superblock are copied to the new superblock
before the program superchip operation is retried.

Read superchip. This operation reads an arbitrary
number of sectors from a physical superblock. Like the
program superchip operation, it requires five arguments:
the superchip number, the physical block addresses of the
physical superblock, the number of the start sector within
the physical superblock, the number of sectors to be read,
and the start sector buffer index to which the requested
sectors are sequentially stored. The data returned from
flash memory can either be stored in the sector buffer or
forwarded to the host interface. For this purpose, a special
sector buffer index is reserved to designate the host
interface, and the splitter unit in Fig. 2 handles the routing
required.

Copy-back superchip. This is a merge operation
between the physical superblock currently mapped to a
logical superblock and the set of sectors that are write-
buffered in the sector buffer and belong to the logical
superblock. The operation has four arguments: the super-
chip number of the source and destination physical superb-
locks, the physical block addresses of the source physical
superblock (i.e., the physical superblock mapped to the
logical superblock before the merge), the address of the data
structure that contains information about the sectors write-
buffered in the sector buffer for the logical superblock, the
physical block addresses of the destination physical superb-
lock (i.e., the physical superblock mapped to the logical
superblock after the merge). Note that the superchip
numbers for both the source and destination physical
superblocks are the same, since a given logical superblock
is always mapped to the same superchip.

After a merge operation for a logical superblock, using a
copy-back superchip operation, the block mapping table in
the bulk RAM is updated for that logical superblock and a

log is created in a reserved area of flash memory.
Periodically, the block mapping table in the bulk RAM is
flushed to another reserved area of flash memory. During a
power-on recovery, the block mapping table in flash
memory is loaded into the bulk RAM and the logs are
replayed to reconstruct the up-to-date block mapping table.

3.3.2 Multiple Background Units

In the Hydra SSD architecture, there are multiple back-
ground units, each of which is a high-level flash memory
controller. This allows more than one superchip operation
involving different logical superblocks to be performed in
parallel. However, if the flash memory buses are reserved
by a background unit during the whole period of a low-
level flash memory operation, their utilization will be
severely impaired, as Fig. 7a illustrates. In this example,
since the flash memory buses are reserved for a low-level
erase operation issued by background unit 1, those from
background units 2 through 4 cannot be performed, even
though they are directed to different superchips. Note that
each E, P, R, and S command in the figure denotes multiple
low-level flash memory commands of the same type
directed to the constituent chips in the superchip. Similarly,
T indicates parallel data transfer to/from the chips in the
superchip over multiple flash memory buses.

To rectify the problem resulting from the coarse-grained
interleaving explained above, operations from background
units are more finely interleaved. If a background unit
issues a long-latency command such as an erase, program,
or read command, as part of a low-level flash operation,
that unit is suspended and another eligible background unit
is resumed. Afterwards, when the long-latency command
has been completed does the associated background unit
again become eligible for scheduling. The dispatcher unit
shown in Fig. 2 is responsible for this scheduling between
multiple background units. Fig. 7b shows how this fine-
grained interleaving corrects the problem that occurred in
the example of Fig. 7a. Background unit 1 is now suspended
after issuing an erase command, allowing other background
units to issue commands directed to other superchips. After
the erase command is complete, background unit 1 resumes
and it issues the required status check command.

3.4 Prioritized Handling of Foreground and
Background Requests

To reduce the response time of host read requests, one of
the high-level flash memory controllers is designated as the
foreground unit and is dedicated to servicing read requests.
The prioritized forwarder unit in Fig. 2 gives this fore-
ground unit priority over the background units. When a
new foreground request arrives, the prioritized forwarder
unit preempts the background processing in progress, at the
earliest possible time at which this can be done without
violating the correctness.

More specifically, when the foreground request targets a
superchip which is not being accessed by any of the
background units, the preemption occurs at the end of the
current primitive operation, as shown in Fig. 8a. In the
example given in this figure, the read operation by the
foreground unit is accessing super-chip 5, which is not being
used by any of the background units. This allows preemption
almost immediately after the current primitive operation is
complete.

SEONG ET AL.: HYDRA: A BLOCK-MAPPED PARALLEL FLASH MEMORY SOLID-STATE DISK ARCHITECTURE 911

However, if the superchip which is the target of the
foreground request is currently being used by one of the
background units, preemption is delayed until the end of the
current low-level flash memory operation, as shown in
Fig. 8b. In this example, the foreground unit waits until the
current low-level flash operation from background unit 4 is
complete, since both units need to access the same superchip
(superchip 3). This delayed preemption is necessary since
an operation in a NAND flash memory chip cannot be
suspended by another operation addressed to the same chip.

3.5 Wear-Leveling

The use of block-level mapping in Hydra greatly simplifies
wear-leveling since block-level mapping, unlike page-level
mapping, does not suffer from the complications that arise
if wear-leveling is coupled to garbage collection [8], [10],
[17]. Instead, Hydra uses two simple techniques borrowed
from wear-leveling in page-mapping FTLs: one is implicit
and the other explicit [3], [10]. In implicit wear-leveling,
when a merge operation is performed, the free physical
superblock with the smallest erase count is used as the

destination of the copy-back superchip operation. In explicit
wear-leveling, when the SSD is idle, the physical superblock
with the smallest erase count (among those mapped to
logical superblocks) is swapped with the free physical
superblock with the largest erase count, provided that the
difference between the two counts is above a certain
threshold. To facilitate both implicit and explicit wear-
leveling, Hydra keeps erase counts of all the physical
superblocks in the bulk RAM, and flushes this information
to flash memory when the block mapping table is flushed.

4 PROTOTYPE IMPLEMENTATION AND

PERFORMANCE EVALUATION

We constructed a prototype implementation of the Hydra
SSD architecture and evaluated its performance. After
describing the experimental setup, we will present the
results that we obtained with the PCMark05 [9] and TPC-C
[31] benchmarks in Sections 4.2 and 4.3, respectively.
Finally, we will discuss issues of energy consumption and
wear-leveling in Section 4.4.

912 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010

Fig. 7. Two alternative interleaving techniques between multiple background units. (a) Coarse-grained interleaving between multiple background
units. (b) Fine-grained interleaving between multiple background units.

4.1 Experimental Setup

We implemented a prototype of the Hydra SSD architec-

ture using the in-house development board shown in Fig. 9,

which has a Xilinx Virtex 4 FPGA (XC4VFX100-10FF1517)

with two embedded PowerPC405 processors, of which

we use only one. Most of the functionality of Hydra is

implemented in the FPGA, except for bulk RAM and

NAND flash memory.
The bulk RAM consists of a 64 MB SDRAM, of which only

16 MB is used by the prototype implementation. The NAND

flash memory consists of four NAND flash memory

modules, each of which fits into a socket in the development

board and connects to a separate flash memory bus. The

socket can accept various NAND flash memory modules, as

shown in Fig. 9. The module that we used contains eight

1 GB NAND flash memory chips, giving a total capacity of

32 GB (1 GB=chip� 8 chips=module� 4 modules).
The host interface of the development board has both

serial ATA (S-ATA) [13] and parallel ATA (P-ATA) [12]

connectors. A device-side P-ATA controller is implemen-
ted in the FPGA, and the S-ATA interface is achieved by a
P-ATA to S-ATA bridge chip. The board also has an
extension slot, a DDR SDRAM, an Ethernet interface, a
synchronous SRAM, and a NOR flash memory to support
future developments. More details about the development
board can be found in [23].

In the default configuration, the embedded PowerPC405
processor in the FPGA operates at 200 MHz, and the system
bus runs at 100 MHz. The code, data, and stack sections
required by the FTL are provided by the embedded RAM in
the FPGA. All the Hydra-specific units and data paths in the
prototype are 32 bits wide and operate at 80 MHz, except for
the flash memory subsystem, in which the data-path is 8 bits
wide and operates at 40 MHz, as required to interface to
the NAND flash memory buses. The default interleaving
configuration is 4-way bus-level interleaving and 2-way
chip-level interleaving, and sectors are distributed within a
superblock, as shown in Fig. 4b. The code and data size of
the FTL implemented using embedded RAM in the FPGA is
62.3 KB and 11.9 KB, respectively. Table 1 summarizes the
utilization of the FPGA by the Hydra SSD prototype in this
default configuration, which shows that Hydra can be
comfortably implemented in a single ASIC chip.

Out of the 16 MB of bulk RAM accessible in the
prototype, 1 MB is used for storing various Hydra
metadata including 256 KB for the block mapping table
and the remaining memory (i.e., 15 MB) for the sector
buffer. In the prototype implementation, background
materialization is invoked if the free space in the sector
buffer drops below 30 percent or there are more than eight
superblocks in the sector buffer. In both cases, background
materialization continues until only the superblock most
recently written by the host remains in the sector buffer.
But if a flush-cache request is received from the host, all the
data in the sector buffer is materialized to flash memory.

SEONG ET AL.: HYDRA: A BLOCK-MAPPED PARALLEL FLASH MEMORY SOLID-STATE DISK ARCHITECTURE 913

Fig. 8. Prioritized handling of foreground and background requests.
(a) When there is no superchip conflict. (b) When there is a superchip
conflict.

Fig. 9. Hydra SSD prototype.

TABLE 1
Hydra SSD Prototype FPGA Utilization

For comparison purposes, we also evaluated the perfor-
mance of two HDDs and three SSDs, whose specifications
are given in Table 2. All of them use the P-ATA host
interface, allowing a fair comparison. The host system is a
desktop PC with a 2.8 GHz Intel Pentium 4 processor and
1 GB of main memory, running Windows XP Professional
(Version 5.1.2600). The main-board chipset is the Intel i965P
and the host-side ATA controller is the Intel ICH7R.

4.2 Performance Evaluation (PCMark05)

This section reports results from our performance evalua-
tion using the PCMark05 HDD benchmark program
(build 1.2.0) [9] that emulates the workload of a typical
PC environment. PCMark05 has five components: XP
Startup, Application Loading, General Usage, Virus Scan, and
File Write. Each replays actual disk accesses recorded in the
corresponding context and contains not only regular read
and write requests but also flush-cache requests that
require sectors previously buffered to volatile storage to
be materialized to nonvolatile storage. XP Startup replays
read and write requests made by the host during a
Windows XP boot-up. About 90 percent of its requests
are for reading and 10 percent for writing. Application
Loading contains the host requests made during the launch

and termination of application programs such as Microsoft
Word, Adobe Acrobat Reader, and the Mozilla Internet
Browser. It consists of 83 percent reads and 17 percent
writes. General Usage contains host requests made during
the execution of application programs such as Microsoft
Word, Winzip, Winamp, Microsoft Internet Explorer, and
Windows Media Player. It has 60 percent reads and
40 percent writes. Virus Scan contains host requests made
while scanning 600 MB of files for viruses. As might be
expected, its requests are 99.5 percent reads. Finally, File
Write contains host requests for writing 680 MB of files, and
does not include any read requests.

The result of running each component benchmark is
expressed as a transfer rate in megabytes per second and
the PCMark05 benchmark reports an HDD score [9] which
is the geometric mean of the five-component benchmark
results multiplied by 300.

4.2.1 Comparison of Hydra with HDDs and Other SSDs

Fig. 10 shows PCMark05 HDD benchmark results for the
Hydra SSD prototype and the other five storage systems in
Table 2. The resulting scores show that Hydra performs
80 percent better (6080 versus 11045) than the best of the
other disks, which was the Samsung 2.5-inch SSD.

914 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010

TABLE 2
Specification of HDDs and SSDs

Fig. 10. PCMark05 HDD benchmark results.

In general, the results suggest that SSDs perform better
than HDDs for nonsequential workloads, such as XP
Startup, Application Loading, and General Usage, because
there is no seek time or rotational latency. However, for
sequential workloads (Virus Scan and File Write), all the
storage systems perform better, as we would expect, and
there is little difference between the performance of the
SSDs and HDDs.

4.2.2 Sensitivity Analysis

Effects of bus-level and chip-level interleaving. Fig. 11
shows the PCMark05 scores for the Hydra prototype for
various degrees of bus-level and chip-level interleaving.
These results show a substantial improvement in perfor-
mance on all the component benchmarks as the degree of
either type of interleaving is increased. This can be attributed
to faster servicing of both read requests from the host and
also background materialization to flash memory.

One interesting result is that Virus Scan hardly benefits
from increasing the degree of chip-level interleaving when
the degree of bus-level interleaving is four. It appears that the
desktop PC used as the host system becomes the bottleneck
at about 75 MB/s when the P-ATA interface is used. To
investigate this further, we slowed down the flash memory
bus clock from 40 to 30 MHz, while leaving the 4-way bus-
level and 2-way chip-level interleaving unchanged. The
result of Virus Scan stayed at about 75 MB/s, reinforcing our
diagnosis of a bottleneck in the host system.

Effects of write buffering. Fig. 12a gives the PCMark05
scores for various sizes of the sector buffer used for write
buffering. We can see that performance is severely limited
when there is no write buffering for all the component
benchmarks except for Virus Scan, which consists mostly of
read accesses. The results also show that increasing the
sector buffer size beyond 2 MB does not improve the
performance very much, except in the case of File Write.
That benchmark mainly consists of bulk writes, and so the
performance improves up to the maximum sector buffer
size of 15 MB.

We then fixed the buffer size at 15 MB, and looked at the
effect of changing the flush high-watermark (Fig. 12b). On
all the benchmarks except File Write, the result is similar to
that of changing the sector buffer size, which is plausible
because reducing the flush high-watermark has the indirect

effect of limiting the size of the sector buffer available for

write buffering. For File Write, however, the performance

improves until the flush high-watermark reaches 10 MB,

and then deteriorates. It would seem that this anomalous

behavior occurs because materialization is delayed as the

high-watermark increases, since the materialization is only

triggered when the high-watermark is reached.
Effects of multiple background units. Fig. 13 shows that

the performance of Hydra improves gradually as more

background units are used for writing to flash. The exception

is Virus Scan, which consists mostly of reads. The perfor-

mance improvement is most noticeable for File Write, which

SEONG ET AL.: HYDRA: A BLOCK-MAPPED PARALLEL FLASH MEMORY SOLID-STATE DISK ARCHITECTURE 915

Fig. 11. Effects of bus-level and chip-level interleaving.

Fig. 12. Effects of write buffering. (a) Effects of write buffer size.
(b) Effects of flush high-watermark.

Fig. 13. Effects of multiple background units.

consists entirely of writes, providing many opportunities for
parallel materialization by multiple background units.

Effect of prioritized handling of foreground and back-

ground requests. To evaluate the effect of prioritizing
foreground requests over background ones, we disabled
this feature. The results are shown in Fig. 14a. As we would
expect, Virus Scan and File Write are largely unaffected, as
they are either mostly reads or mostly writes. Much more
surprising is the marginal effect on the other three bench-
marks. These rather unexpected results seem to be due to
flush-cache requests from the host requiring sectors write-
buffered in the sector buffer to be flushed to flash memory
to maintain file system consistency. This decreases the
probability of reads conflicting with the materialization to
flash memory of previously written data.

To investigate further, we performed an experiment in
which we ignored all the flush-cache requests from the
host. The results in Fig. 14b show that in this new setting
there is a significant performance improvement of more
than 15 percent for XP Startup, Application Loading, and
General Usage.

We then performed a further experiment with synthetic
workloads using the IOMeter tool [14]. We generated a series
of 4 KB read requests intermixed with a series of 4 KB write
requests. We varied the proportion of read and write requests
and measured the average response time for the read
requests. The results are shown in Fig. 15. Without prioritized
handling, the average response time for read requests

increases more rapidly as we inject more write requests. As
a result, when the read/write ratio reaches 1:9, the average
response time without prioritized handling is almost triple
the average response time with prioritized handling.

Effects of optimized handling of flush-cache requests.

The results above show that flush-cache requests from the
host have a significant effect on performance. In the
default setting, when it receives a flush-cache request, the
Hydra SSD materializes all the superblocks that are write-
buffered in the sector buffer before signaling completion.
This sometimes creates a large delay when there are a
large number of superblocks in the sector buffer. One way
of reducing this delay is to flush temporarily the write-
buffered data to a known location in flash memory
without performing merge operations. The results in
Fig. 16 show that this optimization yields a significant
performance improvement of around 20 percent for
XP Startup, Application Loading, and General Usage, in
which most of the write requests are small. But this
change has little effect on Virus Scan, in which most
requests are reads, or on File Write, in which whole
superblocks are written in most cases.

Effects of processor speed. In the default setting,
multiple background units are implemented in hardware
and execute a sequence of high-level flash memory
operations without any intervention by the FTL. This
hardware automation improves overall performance by

916 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010

Fig. 14. Effect of prioritized handling. (a) Default setting. (b) No flush-
cache handling.

Fig. 15. Effects of prioritized handling (IOMeter).

Fig. 16. Effects of optimized handling of flush-cache requests.

reducing the overhead of management work in the FTL. To

assess the effectiveness of this, we also implemented a

software version of the background units and compared the

performance of the two versions, while varying the speed of

the processor from 10 to 160 MHz. The results, shown in

Fig. 17, demonstrate that the performance with the hard-

ware background units is far better than that with the

software units, and unaffected by the speed of the processor

beyond 40 MHz. On the other hand, the performance with

the software units continuously increases with the speed of

the processor, and the processor still remains as a bottleneck

even at 160 MHz.
Effect of the foreground request synthesizer. The

foreground request synthesizer tries to reduce the response

time of host read requests by generating the corresponding

foreground requests entirely in hardware. To assess the

effectiveness of this, we tried turning this feature off, and

the results are given in Fig. 18. To our disappointment, the

hardware foreground request synthesizer seemed largely

ineffectual. The expense of this part of the hardware cannot

be justified if the same functionality runs just as efficiently

when implemented in software.
Effect of mapping table replication. The block mapping

table is the central data structure in Hydra, and is critical

to the integrity of the system. One way to improve the

reliability of Hydra would be to replicate this table in flash

memory for added protection. The results in Fig. 19 show

that this added protection can be obtained without seriously

affecting the performance (<5 percent).

4.3 Performance Evaluation (TPC-C)

To complement the performance evaluation based on
PCMark05, which emulates a typical PC workload, we also
performed experiments using traces obtained from running
the TPC-C benchmark [31], which emulates an online
transaction processing (OLTP) system. The TPC-C bench-
mark traces were collected from an Oracle database server
running on Linux. The benchmark ran for an hour and disk-
level I/O traces were collected using the Blktrace tool [5].

The traces contained 2,701,720 sectors (�1:3 GB) and
the ratio of reads to writes was 3.36:1. The I/O requests
were mostly for 2 KB of data, and spanned over 9 GB of
logical sector address space. The traces were replayed
using the Btrecord [6] and Btreplay [7] tools and we used
I/Os per second (IOPS) as the performance metric.

The results are shown in Fig. 20 for the various versions
of Hydra and the set of HDDs and SSDs discussed
previously. For Hydra, we tested software background
units and hardware background units. In the latter case,
we varied the number of units, and also turned off the
foreground request synthesizer, and then turned off prior-
itized handling as well.

The results, shown in Fig. 20, show similar trends to those
obtained with PCMark05. We see that all the variations of
Hydra, including the one with software background units,
outperform the other storage systems, and the effect of
implementing background units in hardware dwarfs the
other modifications to Hydra. The number of background
units also has a considerable impact, while prioritized
handling has a modest effect and the foreground request
synthesizer makes no noticeable difference. These phenom-
ena have already been explained.

4.4 Related Issues

4.4.1 Energy Consumption

Table 3 presents the energy consumption (in microjoules
per sector read or written) of the Hydra SSD prototype and
the other five storage systems, for four different types of
workload (sequential read, sequential write, random read,
and random write). These results were obtained by
measuring the current drawn from the 5 V/12 V power
supply to the various storage systems while the workloads
were applied by the host. To measure the currents, we

SEONG ET AL.: HYDRA: A BLOCK-MAPPED PARALLEL FLASH MEMORY SOLID-STATE DISK ARCHITECTURE 917

Fig. 17. Effects of processor speed.

Fig. 18. Effect of the foreground request synthesizer.

Fig. 19. Effect of mapping table replication.

inserted a small resistor in each power line and gauged the
voltage drop across the resistor using a data acquisition
(DAQ) board (National Instrument PCI-6259) with a
sampling rate of 1.25 million samples per second. In the
case of Hydra, we also measured the individual power
consumption of the NAND flash memory and the SDRAM,
using separate DAQ connections in the development board.

The results in Table 3 show that, for sequential reads,
sequential writes, and random reads, the SSDs including the
Hydra prototype consume less energy than the HDDs, and
that for these three types of workload, the Samsung 2.5-inch
SSD consumes the least amount of energy. For random
writes, Hydra consumes less energy than the other SSDs, but
more than the Seagate 2.5-inch HDD. The relatively large
amount of energy required by SSDs to perform random
writes is a result of the inherent inability of flash memory
to overwrite data directly, so that many page copies are
required during garbage collection or merge operation
depending on the mapping scheme used.

The energy consumption of the Hydra prototype is
bound to be considerably larger because it is implemented
in FPGA. We would expect the energy consumption of an
ASIC implementation to be somewhere between that of the
prototype and that of the NAND flash memory and SDRAM
components of the prototype (both shown in the table).

4.4.2 Wear-Leveling

We assessed the effectiveness of the wear-leveling techni-
que used in Hydra by means of simulation, since it would

take too long to observe actual patterns of wear in the
Hydra prototype. In this simulation, we divided the storage
space into two regions: a read-only region (30 percent) and
a read/write region (70 percent). The latter is, in turn,
divided into a hot region (20 percent) and a cold region
(80 percent). The hot region is subject to 80 percent of the
total write operations and the cold region to 20 percent.

Fig. 21a shows the maximum difference in erase counts
among the physical superblocks over time for different
threshold values used in Hydra’s explicit wear-leveling
technique. The results show that when this explicit method
of wear-leveling is used, there is an upper bound on the
variation in erase counts.

The results also show that a smaller threshold value gives
a tighter upper bound and more effective wear-leveling, but
this is at the expense of an increase in the number of extra
erase operations, as Fig. 21b illustrates. This indicates that
there is a trade-off between the effectiveness of wear-
leveling and the amount of the overhead involved.

Fig. 21 also shows the results obtained without explicit
wear-leveling (i.e., when the threshold value ¼ 1). In this
case, the variation in wear increases linearly over time,
because some superblocks only contain read-only data. The
value of explicit wear-leveling is clear.

If there is no implicit wear-leveling, then the maximum
difference between the erase counts of physical superblocks
is still bounded, as we can see in Fig. 22a; but Fig. 22b
shows that more explicit wear-leveling is required to bring
the difference in erase counts back below the required

918 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010

Fig. 20. TPC-C benchmark results.

TABLE 3
Energy Consumption Measurement Results

threshold. This shows that explicit wear-leveling does not
make implicit wear-leveling redundant.

5 CONCLUSIONS

We have presented a new flash memory SSD architecture
called Hydra that exploits multichip parallelism effectively.

1. It uses both bus-level and chip-level interleaving to
overcome the bandwidth limitation of the flash
memory bus/chip.

2. It has a prioritized structure of memory control-
lers, consisting of a single high-priority foreground
unit and multiple low-priority background units,
all capable of executing sequences of high-level
flash memory operations without any software
intervention. The foreground unit is dedicated to
the processing of read requests from the host to
minimize the response time.

3. It employs an aggressive write buffering scheme,
which ensures that the background units are utilized
effectively, and also reduces the response time of
write requests.

Evaluation of an FPGA implementation of the Hydra
SSD architecture showed that its performance is over
80 percent better than the best of the HDDs and other SSDs
that we considered.

Currently, we are building an SSD which is similar to
Hydra, except that it is based on page-level mapping.
Although we have already mentioned the problems
inherent in page-level mapping, such as the need for a
large mapping table and the overhead of garbage collection
that sharply increases with utilization, this approach has
great potential to improve the performance of small
random writes, which cannot be dealt with efficiently by
an SSD based on block-level mapping. We plan to compare

the two types of SSD architecture using workloads that are
sufficient to trigger the utilization-dependent effects of
garbage collection in the case of page-level mapping. We
hope that this performance characterization will allow us to
design an efficient RAID [25] architecture, in which both
SSD architectures are combined to achieve an improved
level of overall performance.

ACKNOWLEDGMENTS

The authors would like to thank Sang-Won Lee for
providing us with TPC-C traces and useful information
about them. The authors also would like to thank the
Associate Editor and the anonymous reviewers for their
constructive comments. This work was supported in part by
Creative Research Initiatives (Center for Manycore Pro-
gramming, 2009-0081569) of MEST/KOSEF.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse,
and R. Panigrahy, “Design Tradeoffs for SSD Performance,” Proc.
USENIX 2008 Technical Conf., 2008.

[2] A. Ban, Flash File System Optimized for Page-Mode Flash Technologies,
US Patent no. 5,937,425, Aug. 1999.

[3] A. Ben-Aroya and S. Toledo, “Competitive Analysis of Flash-
Memory Algorithms,” Proc. 14th Ann. European Symp. Algorithms,
pp. 100-111, Sept. 2006.

[4] A. Birrell, M. Isard, C. Thacker, and T. Wobber, “A Design for
High-Performance Flash Disks,” SIGOPS Operating Systems Rev.,
vol. 41, no. 2, Apr. 2007.

[5] Blktrace Manual Page, http://manpages.ubuntu.com/manpages/
intrepid/en/man8/blktrace.html/, 2010.

[6] Btrecord Manual Page, http://manpages.ubuntu.com/
manpages/intrepid/en/man8/btrecord.html/, 2010.

[7] Btreplay Manual Page, http://manpages.ubuntu.com/
manpages/intrepid/en/man8/btreplay.html/, 2010.

[8] M.-L. Chiang, P.C.H. Lee, and R.-C. Chang, “Using Data
Clustering to Improve Cleaning Performance for Flash Memory,”
Software: Practice and Experience, vol. 29, no. 3, pp. 267-290, Mar.
1999.

SEONG ET AL.: HYDRA: A BLOCK-MAPPED PARALLEL FLASH MEMORY SOLID-STATE DISK ARCHITECTURE 919

Fig. 21. Effectiveness of the Hydra wear-leveling technique. (a) Variation
of the maximum erase count difference with different threshold values.
(b) Variation of extra erase ratio with different threshold values.

Fig. 22. Effect of implicit wear-leveling. (a) Variation of the maximum
erase count difference with and without implicit wear-leveling.
(b) Variation of extra erase ratio with and without implicit wear-leveling.

[9] Futuremark Corporation, “PCMark05 Whitepaper,” http://
www.futuremark.com/, 2010.

[10] E. Gal and S. Toledo, “Algorithms and Data Structures for Flash
Memories,” ACM Computing Surveys, vol. 37, no. 2, pp. 138-163,
June 2005.

[11] C. Hwang, “Nanotechnology Enables a New Memory Growth
Model,” Proc. IEEE, vol. 91, no. 11, pp. 1765-1771, Nov. 2003.

[12] INCITS, “AT Attachment with Packet Interface—7, Volume 2—
Parallel Transport Protocols and Physical Interconnect (ATA/ATAPI-
7 V2),” Working Draft, Apr. 2004.

[13] INCITS, “AT Attachment with Packet Interface—7, Volume 3— Serial
Transport Protocols and Physical Interconnect (ATA/ATAPI-7 V3),”
Working Draft, Apr. 2004.

[14] IOmeter Project, http://www.iometer.org/, 2010.
[15] M. Jackson, SAS Storage Architecture. MindShare Press, 2005.
[16] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A Superblock-Based Flash

Translation Layer for NAND Flash Memory,” Proc. Sixth ACM
Conf. Embedded Systems Software (EMSOFT ’06), pp. 161-170, 2006.

[17] A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-Memory
Based File System,” Proc. USENIX 1995 Winter Technical Conf.,
pp. 155-164, 1995.

[18] T. Kgil and T. Mudge, “FlashCache: A NAND Flash Memory
File Cache for Low Power Web Servers,” Proc. 2006 Int’l Conf.
Compilers, Architecture and Synthesis for Embedded Systems
(CASES ’06), Oct. 2006.

[19] T. Kgil, D. Roberts, and T. Mudge, “Improving NAND Flash
Based Disk Caches,” Proc. 35th Int’l Symp. Computer Architecture
(ISCA ’08), pp. 327-338, June 2008.

[20] H. Kim and S. Ahn, “BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage,” Proc. Sixth USENIX
Conf. File and Storage Technologies (FAST ’08), 2008.

[21] J. Kim, J.M. Kim, S.H. Noh, S.L. Min, and Y. Cho, “A Space-
Efficient Flash Translation Layer for CompactFlash Systems,”
IEEE Trans. Consumer Electronics, vol. 48, no. 2, pp. 366-375, May
2002.

[22] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J.
Song, “A Log Buffer-Based Flash Translation Layer Using Fully
Associative Sector Translation,” ACM Trans. Embedded Computing
Systems, vol. 6, no. 3, Jul. 2007.

[23] E.H. Nam, K.S. Choi, J. Choi, H.J. Min, and S.L. Min, “Hardware
Platforms for Flash Memory/NVRAM Software Development,”
J. Computing Science and Eng., vol. 3, no. 3, pp. 181-194, Sept. 2009.

[24] R. Panabaker, “Hybrid Hard Disk & ReadyDrive Technology:
Improving Performance and Power for Windows Vista Mobile
PCs,” http://www.microsoft.com/whdc/winhec/pres06.mspx,
2010.

[25] D.A. Patterson, G. Gibson, and R.H. Katz, “A Case for Redundant
Arrays of Inexpensive Disks (RAID),” Proc. 1988 ACM SIGMOD,
pp. 109-116, 1988.

[26] V. Prabhakaran, T.L. Rodeheffer, and L. Zhou, “Transactional
Flash,” Proc. Eighth USENIX Symp. Operating Systems Design and
Implementation (OSDI ’08), 2008.

[27] M. Rosenblum and J. Ousterhout, “The Design and Implementa-
tion of a Log-Structured File System,” ACM Trans. Computer
Systems, vol. 10, no. 1, pp. 26-52, Feb. 1992.

[28] C. Ruemmler and J. Wilkes, “An Introduction to Disk Drive
Modeling,” Computer, vol. 27, no. 3, pp. 17-28, Mar. 1994.

[29] Samsung Electronics, NAND Flash Memory Data Sheets, http://
www.samsung.com/, 2010.

[30] A. Sheikholeslami and P.G. Gulak, “A Survey of Circuit
Innovations in Ferroelectric Random-Access Memories,” Proc.
IEEE, vol. 88, no. 5, pp. 667-689, May 2000.

[31] Transaction Processing Performance Council (TPC), TPC Bench-
mark C, http://www.tpc.org/, 2010.

[32] C.-H. Wu and T.-W. Kuo, “An Adaptive Two-Level Management
for the Flash Translation Layer in Embedded Systems,” Proc.
IEEE/ACM Int’l Conf. Computer-Aided Design (ICCAD ’06), pp. 601-
606. 2006.

[33] M. Wu and W. Zwaenepoel, “eNVy: A Non-Volatile, Main
Memory Storage System,” Proc. Sixth Int’l Conf. Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-6), pp. 86-97, 1994.

[34] J.H. Yoon, E.H. Nam, Y.J. Seong, H. Kim, B.S. Kim, S.L. Min, and
Y. Cho, “Chameleon: A High Performance Flash/FRAM Hybrid
Solid State Disk Architecture,” IEEE Computer Architecture Letters,
vol. 7, no. 1, pp. 17-20, Jan. 2008.

Yoon Jae Seong received the BS and MS
degrees in computer science and engineering
both from Seoul National University, in 2005
and 2007, respectively. He is currently working
toward the PhD degree at Seoul National
University. His research interests include com-
puter architecture, virtualization technology,
embedded systems, and storage systems. He
is also interested in parallel computing and
distributed systems.

Eyee Hyun Nam received the BS degree in
electrical engineering from Seoul National Uni-
versity in 1998. He was with Comtec Systems
from 1999 to 2002 and Future Systems from
2003 to 2004. He is currently working toward the
PhD degree at Seoul National University. His
research interests include computer architec-
ture, operating systems, embedded systems,
and flash-memory-based storage systems.

Jin Hyuk Yoon received the BS, MS, and PhD
degrees in computer science and engineering
from Seoul National University, in 1999, 2001,
and 2008, respectively. He was a software
engineer at Mtron Storage Technology from
2008 to 2009. He is currently a postdoctoral
researcher in the Institute of Computer Tech-
nology, Seoul National University. His research
interests include operating systems, embedded
systems, and flash-memory-based storage
systems.

Hongseok Kim received the BS degree in
electrical engineering from Seoul National Uni-
versity in 2005. He is currently working toward
the PhD degree in computer science and
engineering at Seoul National University. His
research interests include computer architec-
ture, embedded systems, and storage systems.

Jin-Yong Choi received the BS degree in
electrical engineering from Seoul National Uni-
versity in 2005. He is currently working toward
the PhD degree in computer science and
engineering at Seoul National University. His
research interests include flash-based storage
systems, embedded systems, computer archi-
tecture, and host interface systems.

Sookwan Lee received the BS degree in
computer science and engineering from Seoul
National University in 2000. He is currently
working toward the PhD degree at Seoul
National University. His research interests
include computer architecture, operating sys-
tems, embedded systems, file systems, and
storage systems.

920 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010

Young Hyun Bae received the BS, MS, and
PhD degrees in computer science and engineer-
ing from Seoul National University, in 1993,
1995, and 2006, respectively. He is currently the
CTO at Mtron Storage Technology. He has been
engaged in research in flash memory application
area since 2001. His research interests include
embedded systems and storage systems.

Jaejin Lee received the BS degree in physics
from Seoul National University in 1991, the MS
degree in computer science from Stanford
University in 1995, and the PhD degree in
computer science from the University of Illinois
at Urbana-Champaign in 1999. He is an associ-
ate professor in the School of Computer Science
and Engineering at Seoul National University,
Korea, where he has been a faculty member
since September 2002. Before joining Seoul

National University, he was an assistant professor in the Computer
Science and Engineering Department at Michigan State University. His
research interests include compilers, computer architecture, and
embedded computer systems. He is a member of the IEEE and the
ACM. More information can be found at http://aces.snu.ac.kr/jlee.

Yookun Cho received the BE degree from
Seoul National University, Korea, in 1971, and
the PhD degree in computer science from the
University of Minnesota at Minneapolis, in 1978.
Since 1979, he has been with the School of
Computer Science and Engineering, Seoul Na-
tional University, where he is currently a
professor. He was a visiting assistant professor
at the University of Minnesota during 1985 and a
director of the Educational and Research Com-

puting Center at Seoul National University from 1993 to 1995. He was
president of the Korea Information Science Society during 2001. He was
a member of the program committee of the IPPS/SPDP’98 in 1997 and
the International Conference on High Performance Computing from
1995 to 1997. His research interests include operating systems,
algorithms, system security, and fault-tolerant computing systems. He
is a member of the IEEE.

Sang Lyul Min received the BS and MS degrees
in computer engineering, both from Seoul
National University, Seoul, Korea, in 1983 and
1985, respectively. In 1985, he was awarded a
Fulbright scholarship to pursue further graduate
studies at the University of Washington. He
received the PhD degree in computer science
from the University of Washington, Seattle, in
1989. He is currently a professor in the School of
Computer Science and Engineering, Seoul Na-

tional University, Seoul, Korea. Previously, he was an assistant
professor in the Department of Computer Engineering, Pusan National
University, Pusan, Korea, from 1989 to 1992 and a visiting scientist at the
IBM T. J. Watson Research Center, Yorktown Heights, New York, from
1989 to 1990. He has served on a number of program committees of
technical conferences and workshops, including the International
Conference on Embedded Software (EMSOFT), the Real-Time Systems
Symposium (RTSS), and the Real-Time Technology and Applications
Symposium (RTAS). He was also a member of the editorial board of the
IEEE Transactions on Computers. His research interests include
embedded systems, computer architecture, real-time computing, and
parallel processing. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SEONG ET AL.: HYDRA: A BLOCK-MAPPED PARALLEL FLASH MEMORY SOLID-STATE DISK ARCHITECTURE 921

