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Abstract— We present an abstract fault model for NAND flash 

memory that describes precisely the effects of various faults 
during a flash operation. The abstract model is intended to be 
used to reason about fault-related correctness of key modules of 
flash memory management software such as a flash translation 
layer (FTL). We also introduce the concept of “SAO-compliance” 
to raise awareness about fault-related vulnerabilities of current 
flash memory management software and to promote much needed 
research to fix them. 

Index Terms— Flash memory, fault model, reliability, flash 
translation layer (FTL) 

I. INTRODUCTION 
AND flash memory [1] [2] has become an increasingly 
important storage medium, not only in mobile devices but 

also in PCs and server systems because of its fast random 
access, low power consumption, small size, and high resistance 
to shock and vibration.  

A NAND flash memory chip is organized into physical 
blocks, each of which contains a set of pages. It supports three 
basic operations: read, program, and erase [1] [2] . The read and 
program operations return the contents of the page and write 
the supplied data to the page, respectively. The architecture of 
NAND flash memory does not allow in-place update of data, 
and all the pages in a block must be erased (i.e., reset to all 
0xFF) before any of them can be re-programmed — the erase 
operation performs this task. 

Flash memory is subject to various types of fault. For 
example, blocks fail over time, which is revealed later by an 
error returned from an erase or program operation. Another 
typical fault is power failure that can occur at any time.  

Without understanding the effects of faults in a systematic 
manner, it will be extremely difficult, if not impossible, to 
reason about the correctness of flash memory management 
software such as a flash translation layer (FTL) [3] especially 
when different types of fault are arbitrarily nested. Despite their 
critical importance, there have been no formal models that 
describe precisely the effects of various faults in flash memory.  

The contributions of this letter are two-fold: (1) we present 
an abstract fault model for NAND flash memory along with an 
extension to multi-level cell (MLC) [4] where two or more bits 
are encoded in a single cell and (2) we introduce the concept of 
“SAO-compliance” as a criterion of fault resilience of flash 
management software and discuss its implications in reasoning 
about fault-related correctness. 

II. FAULT CLASSIFICATION 
NAND flash memory is subject to both internal and external 

faults. Internal faults are synchronous in the sense that they are 
revealed by the execution of a particular flash operation. An 
erase operation can report a fault by returning an error code 
when one or more bits in the target block are stuck at 0, and thus 
cannot be reset to 0xFF. Similarly, a program operation can 
report a fault when some bits in the target page are stuck at 1. 
These two faults are permanent in the sense there is no way of 
restoring the affected cells to their normal states. Whenever a 
block exhibits either of these permanent faults, it should be 
remapped to a reserved spare block and never used in the future. 
A read operation can also reveal an internal fault called 
bit-flipping errors due mainly to program/read disturbance and 
charge leakage [5]. Unlike the previous two types of internal 
fault that are permanent, this fault is transient, meaning that its 
effects are removed by a subsequent erase operation on the 
affected block. 

Unlike internal faults, an external fault is not associated with 
flash operations, and is thus asynchronous with them. Power 
failure is a typical example of an external fault and it can occur 
at any time. More importantly, power failure can lead to 
anomalous behaviors in NAND flash memory. For example, 
power failure during a program operation can leave the target 
page in an indeterminate state and in such a case the reliability 
of the programmed data cannot be guaranteed even when the 
page appears to be properly programmed [6]. Similarly, an 
erase operation that has been interrupted by power failure can 
put the target block into an unreliable state so that even in the 
case when a page appears to be erased (i.e., contains all 0xFF) 
the reliability of a subsequent program to the page cannot be 
guaranteed [6]. 

Fig. 1 gives a classification of various faults in NAND flash 
memory discussed in this section. 

III. ABSTRACT FAULT MODEL 

A. Baseline Model 
Here we present a baseline abstract fault model assuming 

each cell encodes a single bit (an extension to MLC is 
explained in Section III-C). Before we define the fault model, 
we make a few assumptions. First, we make the usual 
assumptions about error control. We assume that the (external) 
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Fig. 1. Classification of faults in NAND flash memory. 
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error control logic returns one of the following three symbolic 
page values for every read operation from a page: Erased (i.e., 
all 0xFF), Data OK (errors correctable), or Corrupted (errors 
detectable but uncorrectable). We also assume that the error 
detection is powerful enough so that it always raises an error on 
a read from a page containing random data. For error correction, 
we assume that it is sufficiently strong to correct bit-flipping 
errors resulting from program/read disturbance and charge 
leakage. The two assumptions above on error detection and 
correction are necessary to provide any meaningful 
fault-related correctness guarantee. 

We also assume that a program operation to a page is 
performed only after the block that contains the page has been 
successfully erased and that pages within a block are 
programmed only in an ascending order and each page is 
programmed at most once. These assumptions are required by 
the manufacturers to guarantee the reliability of the 
programmed page data [1] [2]. 

In our fault model, we associate a non-deterministic finite 
state machine with each page. There can be many possible fault 
models depending on the set of states and the associated 
transitions in the non-deterministic finite state machine. In the 
baseline model, the states are defined by the symbolic values 
that a page may have (i.e., Erased, Data OK, and Corrupted) 
and also by the past history if it affects the page’s future 
behavior on faults. 

Fig. 2 shows a classification diagram that defines the states 
of our baseline abstract fault model. In the classification 
diagram, the page state is divided into two classes depending on 
whether the page contains all 0xFF (i.e., Erased) or not 
(Programmed). The Erased class further divides into two 
subclasses depending on whether the page has not undergone 
any operation since the last successful erase operation and thus 
is programmable (i.e., Erased (Programmable)) or not (i.e., 
Erased (not Programmable)). The Erased (Programmable) 
subclass is one of the states of the finite state machine whereas 
the Erased (not Programmable) subclass contains two states 
depending on whether there has been a prior program operation 
since the last successful erase operation (i.e., Erased (not 
Programmable)-PP) or not (i.e., Erased (not 
Programmable) -NPP). The difference between the two states 
in the Erased (not Programmable) subclass lies in the page’s 
future behavior on faults, as we will explain when we describe 

transitions in the finite state machine. 
Similar to the Erased class, the Programmed class has two 

subclasses depending on whether the errors in the data are 
correctable (i.e., Programmed (Data OK)) or not (i.e., 
Programmed (Corrupted)). The Programmed (Data OK) is 
one of the states of the finite state machine whereas the 
Programmed (Corrupted) subclass leads to two states 
depending on whether there has been a prior program operation 
since the last successful erase operation (i.e., Programmed 
(Corrupted)-PP) or not (i.e., Programmed (Corrupted) 
-NPP). To summarize, our baseline abstract fault model has the 
following six states. 
- Erased (Programmable): The block that contains this page 

was successfully erased and after the successful erasure, no 
attempt has been made to erase the block or to program the 
page. By the semantics of the erase operation, all the bytes in 
the page are 0xFF. 

- Erased (not Programmable)-PP: All the bytes in this page 
are 0xFF and an attempt has been made to program the page 
after the last successful erasure of the containing block. The 
program operation must have been unsuccessful due to an 
internal or external fault. Otherwise, the page should be in 
the Programmed (Data OK). 

- Erased (not Programmable)-NPP: All the bytes in this 
page are 0xFF and no attempt has been made to program this 
page (but an unsuccessful erase operation has been 
performed) after the last successful erasure of the containing 
block. 

- Programmed (Data OK): This page contains data in the 
Data OK state. To reach this state, there must have been a 
program operation to the page after the last successful 
erasure of the containing block. 

- Programmed (Corrupted)-PP: This page is in the 
Corrupted state and an attempt has been made to program 
the page (although unsuccessful for the same reason as in the 
Erased (not Programmable)-PP case) after the last 
successful erasure of the containing block. 

- Programmed (Corrupted)-NPP: This page is in the 
Corrupted state and no attempt has been made to program 
this page (but an unsuccessful erase operation has been 
performed) after the last successful erasure of the containing 
block. 

In the baseline abstract fault model, each transition is 
specified by OP/F where 

- OP is Erase (of the containing block) or Program (of the 
page) and 

- F is OK when there is no fault, or IF when there is an 
internal fault (erase or program error depending on OP), or 
PF when there is power failure. 

In deriving the set of transitions for our fault model, we make 
the weakest assumptions about the fault behavior to make the 
model as general as possible. For example, for a program 
operation, which is allowed only to a page in the Erased 
(Programmable), we assume that all the three symbolic page 
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Fig. 2. Classification diagram for page state. 
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values (i.e., Erased, Data OK, and Corrupted) are possible 
when there is an internal fault or power failure. This leads to 
inclusion of transitions from Erased (Programmable) to 
Erased (not Programmable)-PP, Programmed (Data OK), 
and Programmed (Corrupted)-PP.  

Unlike a program operation, which is allowed only to a page 
in the Erased (Programmable) state, an erase operation is 
allowed to a page in any state since the containing block can be 
erased at any time. We again make the weakest assumption and 
allow, on an internal fault or power failure, all the symbolic 
page values that are possible from the current page state. For 
example, for the three states where their history includes a 
program operation after the last successful erasure (i.e., Erased 
(not Programmable)-PP, Programmed (Data OK), and 
Programmed (Corrupted)-PP), we add transitions to all of 
them on an internal fault or power failure.  

Similarly, for states where there has been no program 
operation after the last successful erasure (i.e., Erased 
(Programmable), Erased (not Programmable)-NPP, and 
Programmed (Corrupted)-NPP), we include transitions to 
Erased (not Programmable)-NPP and Programmed 
(Corrupted)-NPP) on an internal fault or power failure. The 
exclusion of a transition to the Programmed (Data OK) state 
is due to the fact that the page contains random data because 
there has been no program operation since the last successful 
erase operation and thus the error detection logic will raise an 
error according to our assumption made earlier in this section. 
This also explains why we needed to make distinction between 
Erased (not Programmable)-PP and Erased (not 
Programmable)-NPP and also between Programmed 
(Corrupted)-PP and Programmed (Corrupted)-NPP. Fig. 3 
shows the resulting state transition diagram corresponding to 
our baseline fault model. 

B. Extension (Non-persistent Binding Model) 
In the baseline fault model of NAND flash memory in the 

previous section, transitions between states are triggered only 
by erase and program operations. This implies that although the 
model exhibits non-deterministic behavior on a fault during an 
erase or program operation, a subsequent read operation binds 

the page with one of the three symbolic page values and later 
reads to the page always return the same symbolic page value. 
In this sense, we call our previous fault model a persistent 
binding model. Although simple, this model fails to capture the 
empirical observation in [6] that if there is power failure during 
a program operation, the reliability of the programmed data 
cannot be guaranteed even when the page appears to be 
properly programmed. 

To model such behavior, we should allow transitions 
between “unreliable” states where an unreliable state is defined 
as one reached by a fault during an erase or program operation. 
This can be achieved by allowing a read operation to trigger 
transitions when the target page is in an unreliable state. To 
incorporate this, first we need to divide the Programmed 
(Data OK) state into two different states, one that can be 
reached only by the Program/OK transition (and thus is 
reliable) and the other by a program or erase operation with a 
fault (and thus is unreliable). We denote the former by 
Programmed (Data OK)-R (R for reliable) and the latter by 
Programmed (Data OK)-U (U for unreliable). 

With this setting, there are two reliable states (i.e., Erased 
(Programmable) and Programmed (Data OK)-R) and five 
unreliable states (i.e., Erased (not Programmable)-PP, 
Erased (not Programmable)-NPP, Programmed (Data 
OK)-U, Programmed (Corrupted)-PP, and Programmed 
(Corrupted)-NPP). From reliable states, we do not add any 
transitions on a read operation. However, all the possible 
transitions are added between unreliable states on a read 
operation. These additional transitions include all the possible 
transitions among Erased (not Programmable)-PP, 
Programmed (Data OK)-U, and Programmed 
(Corrupted)-PP and also those between Erased (not 
Programmable)-NPP and Programmed (Corrupted)-NPP. 
The resulting state transition diagram is shown in Fig. 4 where 
denoted by Read/SV is a transition by a read operation that 
returns symbolic page value SV. 

C. Extension (MLC) 
The only difference between SLC and MLC NAND flash 

memories from the fault modeling point of view is that in MLC 
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Fig. 3. State transition diagram of baseline fault model. 
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NAND flash memory page data can potentially be corrupted if 
there is an internal or external fault during the program 
operation of a sibling page (i.e., a page that shares the same 
cells in the MLC NAND flash memory) as specified in the 
manufacturers’ datasheets [1] [2] and also observed empirically 
in [6]. Our fault model can easily be extended to capture this 
MLC behavior by including additional transitions 
corresponding to program operations to sibling pages. For a 
successful program of a sibling page, there is no state change 
and thus no need to include additional transitions. On the other 
hand, when a program operation to a sibling page is 
unsuccessful due to an internal or external fault, we need to 
allow all the symbolic page values that are possible from the 
current page state and add transitions accordingly. This 
situation is analogous to an unsuccessful erasure due to an 
internal or external fault in our previous two models and thus 
we need to add the same transitions for an unsuccessful 
program to a sibling page as for an unsuccessful erase 
operation. 

IV. SAO-COMPLIANCE 
From the fault model in the previous section, it is clear that 

we need to program a page according to the following rule to 
guarantee the reliability of the programmed data, which we call 
the SAO rule: 

- Successful  
- erasure of the block containing the page, 
- program of the target page as well as sibling pages 

- Program only in an Ascending order, and 
- Program at most Once 

Also, we call a page to be “SAO-compliant” if all the 
conditions above are met.  

We argue that the SAO-compliance is critical to ensure the 
FTL’s robustness with respect to various faults. For example, if 
all the accessible pages are SAO-compliant after power-on 
recovery in an FTL, the anomalous behaviors on power failure 
reported in [6] (explained in Section II) can be completely 
avoided. 

Despite the critical importance of correct handling of faults, 
many FTLs do not even mention about the relevant power-on 
recovery and bad block handling. Even for those few FTLs that 
do address these fault-related issues, it is not clear whether they 
are SAO-compliant or not.  

To remedy this situation, the abstract fault model presented 
in this letter can be integrated into the testing of the FTL. In a 
practical setting, the FTL runs on top of emulated NAND flash 
memory during testing. The emulated NAND flash memory 
supports not only the usual read/program/erase operations but 
also fault injection capability. On each fault, the emulated 
NAND flash memory records all the possible symbolic states 
the target page can have based on the finite state machine 
corresponding to the abstract fault model. If there is an attempt 
to read a page that has a symbolic page value other than Data 
OK, the FTL may have fault-related vulnerabilities resulting 

from failure to meet SAO-compliance. This indicates a need for 
further debugging to identify the source of the non-compliance. 

The abstract fault model is also useful to prove that after 
power-on recovery a page with a symbolic value other than 
Data OK cannot be read. This proof can be carried out using a 
model checking technique [7] by integrating the finite state 
machine corresponding to the abstract fault model and showing 
that the model never reaches a state where a page with a 
symbolic value other than Data OK is read. This is the 
approach we used to prove the correctness of a bad block 
management scheme called X-BMS [8]. 

V. CONCLUSIONS 
In this letter, we have presented an abstract fault model for 

NAND flash memory that considers not only internal faults (i.e., 
erase and program errors) but also external ones (i.e., power 
failure) in flash memory. In constructing the fault model, we 
make the weakest assumptions on the possible outcomes when 
a flash operation is subject to faults to make the resulting model 
as general as possible. This generality also makes possible easy 
extension to MLC flash memory. Finally, we introduce the 
concept of “SAO-compliance” as the key criterion of fault 
resilience of an FTL and explain its relevance to the FTL’s 
correctness. 
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