
Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Abstract— We present an abstract fault model for NAND flash

memory that describes precisely the effects of various faults
during a flash operation. The abstract model is intended to be
used to reason about fault-related correctness of key modules of
flash memory management software such as a flash translation
layer (FTL). We also introduce the concept of “SAO-compliance”
to raise awareness about fault-related vulnerabilities of current
flash memory management software and to promote much needed
research to fix them.

Index Terms— Flash memory, fault model, reliability, flash
translation layer (FTL)

I. INTRODUCTION
AND flash memory [1] [2] has become an increasingly
important storage medium, not only in mobile devices but

also in PCs and server systems because of its fast random
access, low power consumption, small size, and high resistance
to shock and vibration.

A NAND flash memory chip is organized into physical
blocks, each of which contains a set of pages. It supports three
basic operations: read, program, and erase [1] [2] . The read and
program operations return the contents of the page and write
the supplied data to the page, respectively. The architecture of
NAND flash memory does not allow in-place update of data,
and all the pages in a block must be erased (i.e., reset to all
0xFF) before any of them can be re-programmed — the erase
operation performs this task.

Flash memory is subject to various types of fault. For
example, blocks fail over time, which is revealed later by an
error returned from an erase or program operation. Another
typical fault is power failure that can occur at any time.

Without understanding the effects of faults in a systematic
manner, it will be extremely difficult, if not impossible, to
reason about the correctness of flash memory management
software such as a flash translation layer (FTL) [3] especially
when different types of fault are arbitrarily nested. Despite their
critical importance, there have been no formal models that
describe precisely the effects of various faults in flash memory.

The contributions of this letter are two-fold: (1) we present
an abstract fault model for NAND flash memory along with an
extension to multi-level cell (MLC) [4] where two or more bits
are encoded in a single cell and (2) we introduce the concept of
“SAO-compliance” as a criterion of fault resilience of flash
management software and discuss its implications in reasoning
about fault-related correctness.

II. FAULT CLASSIFICATION
NAND flash memory is subject to both internal and external

faults. Internal faults are synchronous in the sense that they are
revealed by the execution of a particular flash operation. An
erase operation can report a fault by returning an error code
when one or more bits in the target block are stuck at 0, and thus
cannot be reset to 0xFF. Similarly, a program operation can
report a fault when some bits in the target page are stuck at 1.
These two faults are permanent in the sense there is no way of
restoring the affected cells to their normal states. Whenever a
block exhibits either of these permanent faults, it should be
remapped to a reserved spare block and never used in the future.
A read operation can also reveal an internal fault called
bit-flipping errors due mainly to program/read disturbance and
charge leakage [5]. Unlike the previous two types of internal
fault that are permanent, this fault is transient, meaning that its
effects are removed by a subsequent erase operation on the
affected block.

Unlike internal faults, an external fault is not associated with
flash operations, and is thus asynchronous with them. Power
failure is a typical example of an external fault and it can occur
at any time. More importantly, power failure can lead to
anomalous behaviors in NAND flash memory. For example,
power failure during a program operation can leave the target
page in an indeterminate state and in such a case the reliability
of the programmed data cannot be guaranteed even when the
page appears to be properly programmed [6]. Similarly, an
erase operation that has been interrupted by power failure can
put the target block into an unreliable state so that even in the
case when a page appears to be erased (i.e., contains all 0xFF)
the reliability of a subsequent program to the page cannot be
guaranteed [6].

Fig. 1 gives a classification of various faults in NAND flash
memory discussed in this section.

III. ABSTRACT FAULT MODEL

A. Baseline Model
Here we present a baseline abstract fault model assuming

each cell encodes a single bit (an extension to MLC is
explained in Section III-C). Before we define the fault model,
we make a few assumptions. First, we make the usual
assumptions about error control. We assume that the (external)

An Abstract Fault Model for NAND Flash Memory
Ji Hyuck Yun1, Jin Hyuk Yoon2, Eyee Hyun Nam1, and Sang Lyul Min1

School of Computer Science and Engineering, Seoul National University, Seoul 151-742, Korea
1{jhyun, ehnam, symin}@archi.snu.ac.kr, 2jhyoon@ssrnet.snu.ac.kr

N

Fig. 1. Classification of faults in NAND flash memory.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

error control logic returns one of the following three symbolic
page values for every read operation from a page: Erased (i.e.,
all 0xFF), Data OK (errors correctable), or Corrupted (errors
detectable but uncorrectable). We also assume that the error
detection is powerful enough so that it always raises an error on
a read from a page containing random data. For error correction,
we assume that it is sufficiently strong to correct bit-flipping
errors resulting from program/read disturbance and charge
leakage. The two assumptions above on error detection and
correction are necessary to provide any meaningful
fault-related correctness guarantee.

We also assume that a program operation to a page is
performed only after the block that contains the page has been
successfully erased and that pages within a block are
programmed only in an ascending order and each page is
programmed at most once. These assumptions are required by
the manufacturers to guarantee the reliability of the
programmed page data [1] [2].

In our fault model, we associate a non-deterministic finite
state machine with each page. There can be many possible fault
models depending on the set of states and the associated
transitions in the non-deterministic finite state machine. In the
baseline model, the states are defined by the symbolic values
that a page may have (i.e., Erased, Data OK, and Corrupted)
and also by the past history if it affects the page’s future
behavior on faults.

Fig. 2 shows a classification diagram that defines the states
of our baseline abstract fault model. In the classification
diagram, the page state is divided into two classes depending on
whether the page contains all 0xFF (i.e., Erased) or not
(Programmed). The Erased class further divides into two
subclasses depending on whether the page has not undergone
any operation since the last successful erase operation and thus
is programmable (i.e., Erased (Programmable)) or not (i.e.,
Erased (not Programmable)). The Erased (Programmable)
subclass is one of the states of the finite state machine whereas
the Erased (not Programmable) subclass contains two states
depending on whether there has been a prior program operation
since the last successful erase operation (i.e., Erased (not
Programmable)-PP) or not (i.e., Erased (not
Programmable) -NPP). The difference between the two states
in the Erased (not Programmable) subclass lies in the page’s
future behavior on faults, as we will explain when we describe

transitions in the finite state machine.
Similar to the Erased class, the Programmed class has two

subclasses depending on whether the errors in the data are
correctable (i.e., Programmed (Data OK)) or not (i.e.,
Programmed (Corrupted)). The Programmed (Data OK) is
one of the states of the finite state machine whereas the
Programmed (Corrupted) subclass leads to two states
depending on whether there has been a prior program operation
since the last successful erase operation (i.e., Programmed
(Corrupted)-PP) or not (i.e., Programmed (Corrupted)
-NPP). To summarize, our baseline abstract fault model has the
following six states.
- Erased (Programmable): The block that contains this page

was successfully erased and after the successful erasure, no
attempt has been made to erase the block or to program the
page. By the semantics of the erase operation, all the bytes in
the page are 0xFF.

- Erased (not Programmable)-PP: All the bytes in this page
are 0xFF and an attempt has been made to program the page
after the last successful erasure of the containing block. The
program operation must have been unsuccessful due to an
internal or external fault. Otherwise, the page should be in
the Programmed (Data OK).

- Erased (not Programmable)-NPP: All the bytes in this
page are 0xFF and no attempt has been made to program this
page (but an unsuccessful erase operation has been
performed) after the last successful erasure of the containing
block.

- Programmed (Data OK): This page contains data in the
Data OK state. To reach this state, there must have been a
program operation to the page after the last successful
erasure of the containing block.

- Programmed (Corrupted)-PP: This page is in the
Corrupted state and an attempt has been made to program
the page (although unsuccessful for the same reason as in the
Erased (not Programmable)-PP case) after the last
successful erasure of the containing block.

- Programmed (Corrupted)-NPP: This page is in the
Corrupted state and no attempt has been made to program
this page (but an unsuccessful erase operation has been
performed) after the last successful erasure of the containing
block.

In the baseline abstract fault model, each transition is
specified by OP/F where

- OP is Erase (of the containing block) or Program (of the
page) and

- F is OK when there is no fault, or IF when there is an
internal fault (erase or program error depending on OP), or
PF when there is power failure.

In deriving the set of transitions for our fault model, we make
the weakest assumptions about the fault behavior to make the
model as general as possible. For example, for a program
operation, which is allowed only to a page in the Erased
(Programmable), we assume that all the three symbolic page

Program
operation allowed ?

Erased
(not Programmable)-PP

Erased
(not Programmable)-NPP

Programmed
(Data OK)

Erased
(Programmable)

Erased

Errors
correctable ?

Programmed

Data all 0xFF ?

Page state

Prior program
operation ?

Erased
(not Programmable)

Prior program
operation ?

Programmed
(Corrupted)

Programmed
(Corrupted)-PP

Programmed
(Corrupted)-NPP

Yes No

Yes Yes

Yes Yes

No No

No No

Fig. 2. Classification diagram for page state.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

values (i.e., Erased, Data OK, and Corrupted) are possible
when there is an internal fault or power failure. This leads to
inclusion of transitions from Erased (Programmable) to
Erased (not Programmable)-PP, Programmed (Data OK),
and Programmed (Corrupted)-PP.

Unlike a program operation, which is allowed only to a page
in the Erased (Programmable) state, an erase operation is
allowed to a page in any state since the containing block can be
erased at any time. We again make the weakest assumption and
allow, on an internal fault or power failure, all the symbolic
page values that are possible from the current page state. For
example, for the three states where their history includes a
program operation after the last successful erasure (i.e., Erased
(not Programmable)-PP, Programmed (Data OK), and
Programmed (Corrupted)-PP), we add transitions to all of
them on an internal fault or power failure.

Similarly, for states where there has been no program
operation after the last successful erasure (i.e., Erased
(Programmable), Erased (not Programmable)-NPP, and
Programmed (Corrupted)-NPP), we include transitions to
Erased (not Programmable)-NPP and Programmed
(Corrupted)-NPP) on an internal fault or power failure. The
exclusion of a transition to the Programmed (Data OK) state
is due to the fact that the page contains random data because
there has been no program operation since the last successful
erase operation and thus the error detection logic will raise an
error according to our assumption made earlier in this section.
This also explains why we needed to make distinction between
Erased (not Programmable)-PP and Erased (not
Programmable)-NPP and also between Programmed
(Corrupted)-PP and Programmed (Corrupted)-NPP. Fig. 3
shows the resulting state transition diagram corresponding to
our baseline fault model.

B. Extension (Non-persistent Binding Model)
In the baseline fault model of NAND flash memory in the

previous section, transitions between states are triggered only
by erase and program operations. This implies that although the
model exhibits non-deterministic behavior on a fault during an
erase or program operation, a subsequent read operation binds

the page with one of the three symbolic page values and later
reads to the page always return the same symbolic page value.
In this sense, we call our previous fault model a persistent
binding model. Although simple, this model fails to capture the
empirical observation in [6] that if there is power failure during
a program operation, the reliability of the programmed data
cannot be guaranteed even when the page appears to be
properly programmed.

To model such behavior, we should allow transitions
between “unreliable” states where an unreliable state is defined
as one reached by a fault during an erase or program operation.
This can be achieved by allowing a read operation to trigger
transitions when the target page is in an unreliable state. To
incorporate this, first we need to divide the Programmed
(Data OK) state into two different states, one that can be
reached only by the Program/OK transition (and thus is
reliable) and the other by a program or erase operation with a
fault (and thus is unreliable). We denote the former by
Programmed (Data OK)-R (R for reliable) and the latter by
Programmed (Data OK)-U (U for unreliable).

With this setting, there are two reliable states (i.e., Erased
(Programmable) and Programmed (Data OK)-R) and five
unreliable states (i.e., Erased (not Programmable)-PP,
Erased (not Programmable)-NPP, Programmed (Data
OK)-U, Programmed (Corrupted)-PP, and Programmed
(Corrupted)-NPP). From reliable states, we do not add any
transitions on a read operation. However, all the possible
transitions are added between unreliable states on a read
operation. These additional transitions include all the possible
transitions among Erased (not Programmable)-PP,
Programmed (Data OK)-U, and Programmed
(Corrupted)-PP and also those between Erased (not
Programmable)-NPP and Programmed (Corrupted)-NPP.
The resulting state transition diagram is shown in Fig. 4 where
denoted by Read/SV is a transition by a read operation that
returns symbolic page value SV.

C. Extension (MLC)
The only difference between SLC and MLC NAND flash

memories from the fault modeling point of view is that in MLC

Erase/PF,
Erase/IF

Erase/PF, Erase/IF

Erase/PF, Erase/IF

Erase/PF,
Erase/IF

Erase/OKErase/OK

Erase/PF,
Erase/IF

Erase/PF,
Erase/IF

Erase/OK

Program/OK, Program/PF, Program/IF

Erase/OK

Erase/PF,
Erase/IF

Erase/PF,
Erase/IF

Erase/PF, Erase/IF

Erase/PF, Erase/IF

Program/PF,
Program/IF

Erase/OK

Erase/OK

Program/PF,
Program/IF

Erase/PF,
Erase/IF

Erase/PF,
Erase/IF

Erase/PF,
Erase/IF

Erase/PF,
Erase/IF

Erased
(not Programmable)-NPP

Progammed
(Corrupted)-NPP

Erased
(Programmable)

Erased
(not Programmable)-PP

Programmed
(Data OK)

Programmed
(Corrupted)-PP

Fig. 3. State transition diagram of baseline fault model.

Read/Corrupted

Read/All 0xFF

Read/All 0xFF

Read/Corrupted, Erase/PF, Erase/IF

Read/All 0xFF, Erase/PF, Erase/IF

Read/All 0xFF

Read/Data OK

Read/Corrupted

Read/Data OK

Erase/PF,
Erase/IF

Erase/OKErase/OK

Erase/PF,
Erase/IF

Erase/OK

Program/OK

Erase/OK

Program/PF,
Program/IF

Erase/OK

Erase/PF,
Erase/IF

Erase/PF,
Erase/IF

Erase/PF,
Erase/IF

Erase/PF,
Erase/IF

Erase/PF,
Erase/IF

Erase/PF,
Erase/IF Erase/PF,

Erase/IF

Erase/OK

Program/PF,
Program/IF

Program/PF,
Program/IF

Erase/OK

Read/Corrupted,
Erase/PF, Erase/IF

Read/All 0xFF,
Erase/PF, Erase/IFErase/PF,

Erase/IF,
Read/All 0xFF

Read/Data OK,
Erase/PF, Erase/IF

Read/Data OK,
Erase/PF,
Erase/IF

Read/Corrupted,
Erase/PF, Erase/IF

Erased
(not Programmable)-NPP

Progammed
(Corrupted)-NPP

Erased
(Programmable)

Erased
(not Programmable)-PP

Programmed
(Data OK)-R

Programmed
(Corrupted)-PP

Programmed
(Data OK)-U

Fig. 4. State transition diagram of non-persistent fault model

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

NAND flash memory page data can potentially be corrupted if
there is an internal or external fault during the program
operation of a sibling page (i.e., a page that shares the same
cells in the MLC NAND flash memory) as specified in the
manufacturers’ datasheets [1] [2] and also observed empirically
in [6]. Our fault model can easily be extended to capture this
MLC behavior by including additional transitions
corresponding to program operations to sibling pages. For a
successful program of a sibling page, there is no state change
and thus no need to include additional transitions. On the other
hand, when a program operation to a sibling page is
unsuccessful due to an internal or external fault, we need to
allow all the symbolic page values that are possible from the
current page state and add transitions accordingly. This
situation is analogous to an unsuccessful erasure due to an
internal or external fault in our previous two models and thus
we need to add the same transitions for an unsuccessful
program to a sibling page as for an unsuccessful erase
operation.

IV. SAO-COMPLIANCE
From the fault model in the previous section, it is clear that

we need to program a page according to the following rule to
guarantee the reliability of the programmed data, which we call
the SAO rule:

- Successful
- erasure of the block containing the page,
- program of the target page as well as sibling pages

- Program only in an Ascending order, and
- Program at most Once

Also, we call a page to be “SAO-compliant” if all the
conditions above are met.

We argue that the SAO-compliance is critical to ensure the
FTL’s robustness with respect to various faults. For example, if
all the accessible pages are SAO-compliant after power-on
recovery in an FTL, the anomalous behaviors on power failure
reported in [6] (explained in Section II) can be completely
avoided.

Despite the critical importance of correct handling of faults,
many FTLs do not even mention about the relevant power-on
recovery and bad block handling. Even for those few FTLs that
do address these fault-related issues, it is not clear whether they
are SAO-compliant or not.

To remedy this situation, the abstract fault model presented
in this letter can be integrated into the testing of the FTL. In a
practical setting, the FTL runs on top of emulated NAND flash
memory during testing. The emulated NAND flash memory
supports not only the usual read/program/erase operations but
also fault injection capability. On each fault, the emulated
NAND flash memory records all the possible symbolic states
the target page can have based on the finite state machine
corresponding to the abstract fault model. If there is an attempt
to read a page that has a symbolic page value other than Data
OK, the FTL may have fault-related vulnerabilities resulting

from failure to meet SAO-compliance. This indicates a need for
further debugging to identify the source of the non-compliance.

The abstract fault model is also useful to prove that after
power-on recovery a page with a symbolic value other than
Data OK cannot be read. This proof can be carried out using a
model checking technique [7] by integrating the finite state
machine corresponding to the abstract fault model and showing
that the model never reaches a state where a page with a
symbolic value other than Data OK is read. This is the
approach we used to prove the correctness of a bad block
management scheme called X-BMS [8].

V. CONCLUSIONS
In this letter, we have presented an abstract fault model for

NAND flash memory that considers not only internal faults (i.e.,
erase and program errors) but also external ones (i.e., power
failure) in flash memory. In constructing the fault model, we
make the weakest assumptions on the possible outcomes when
a flash operation is subject to faults to make the resulting model
as general as possible. This generality also makes possible easy
extension to MLC flash memory. Finally, we introduce the
concept of “SAO-compliance” as the key criterion of fault
resilience of an FTL and explain its relevance to the FTL’s
correctness.

ACKNOWLEDGEMENTS
The authors would like to thank Associate Editors Nikil Dutt

and Jason Xue, and the anonymous reviewers for their detailed
and helpful feedback. This work was supported by the National
Research Foundation of Korea (NRF) grant funded by the
Korean government (MEST) (No. 2012-0005620). The
corresponding author for this paper is Eyee Hyun Nam.

REFERENCES
[1] Samsung Electronics. Datasheet: K9GBG08U0A 4 G x 8 Bit NAND

Flash Memory. November 2010.
[2] Hynix. Datasheet: H27UAG8T2A 2 G x 8 Bit NAND Flash Memory. July

2009.
[3] E. Gal and S. Toledo, "Algorithms and Data Structures for Flash

Memories," ACM Computing Surveys, vol. 37, no. 2, pp. 138-163, 2005.
[4] T.-S. Jung, Y.-J. Choi, K.-D. Suh, B.-H. Suh, J.-K. Kim, Y.-H. Lim, Y.-N.

Koh, J.-W. Park, K.-J. Lee, J.-H. Park, K.-T. Park, J.-R. Kim, J.-H. Yi, and
H.-K. Lim, "A 117-mm2 3.3-v only 128-Mb Multilevel NAND Flash
Memory for Mass Storage Applications," IEEE Journal of Solid-State
Circuits, vol. 31, no. 11, pp. 1575-1583, 1996.

[5] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F.
Trivedi, E. Goodness, and L.R. Nevill, "Bit Error Rate in NAND Flash
Memories," in Proceedings of the 46th International Reliability Physics
Symposium, Phoenix, Arizona, USA, 2008.

[6] H.-W. Tseng., L. Grupp., and S. Swanson., "Understanding the Impact of
Power Loss on Flash Memory," in Proceedings of the 48th Design
Automation Conference (DAC), San Diego, California, USA, 2011.

[7] J. Bengtsson and W. Yi, "Timed Automata: Semantics, Algorithms and
Tools," Lecture Notes on Concurrency and Petri Nets, LNCS 3098,
Springer-Verlag, pp. 87-124, 2004.

[8] J.H. Yun, "X-BMS: A Provably-Correct Bad Block Management Scheme
for Flash Memory Based Storage Systems," Ph.D Dissertation, School of
Computer Science and Engineering, Seoul National University, 2011.

