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Ozone (O3): An Out-of-Order
Flash Memory Controller Architecture
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Abstract—Ozone (O3) is a flash memory controller that increases the performance of a flash storage system by executing multiple
flash operations out of order. In the O3 flash controller, data dependencies are the only ordering constraints on the execution of
multiple flash operations. This allows O3 to exploit the multichip parallelism inherent in flash memory much more effectively than
interleaving. The O3 controller also provides a prioritized handling of flash operations, equipping flash management software, such as
the FTL (flash translation layer), with control knobs for managing flash operations of different time criticalities. Running a range of
workloads on an FPGA implementation showed that the O3 flash controller achieves 3 to 100 percent more throughput than

interleaving, with 46 to 88 percent lower response times.

Index Terms—Flash memory, flash translation layer (FTL), storage system, solid-state disk (SSD).

1 INTRODUCTION

LASH memory is increasingly being used as a storage

medium, not only in mobile devices but also in PCs and
server systems, because of its fast random access, low
power consumption, small size, and high resistance to
shock and vibration. The density of NAND flash memory,
the type of flash memory used for bulk storage applications,
has been doubling every year [1]. This trend, which exceeds
Moore’s Law [2], is due to a combination of shrinking
process geometries and multilevel cell (MLC) technology,
which allows multiple bits to be stored in a single transistor.
These developments have made NAND flash memory
competitive with hard disk drives (HDDs), so that solid-
state disks (SSDs) based on flash memory are now being
used in server systems as well as PCs.

NAND flash memory, however, has unusual character-
istics that prevent its direct use as a storage device. A
typical NAND flash chip is organized into blocks, each of
which contains a set of pages that are accessed individually
by read and program operations [3]. The architecture of
NAND flash memory does not allow in-place update of
data, and all the pages in a block must be erased at once
before any of them can be programmed.

To present the same storage interface as an HDD and
to overcome the limitations of flash memory, a software
layer called a flash translation layer (FTL) [4] is used in
flash storage devices, such as an SSD. A simple FTL that
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generates flash requests one at a time can use a sequential
flash controller. However, a more practical FTL needs to
exploit multiple flash chips efficiently by generating
multiple concurrent flash requests, and it necessitates a
flash controller that can service these multiple requests in
parallel. Thus, the flash controller is as important as the
FTL in determining the performance of a flash storage
system. Parallel servicing of flash requests becomes even
more important if the storage device interface allows the
host computer to have multiple read and write requests
outstanding.

For effective exploitation of the multichip parallelism in
flash memory, we looked to the out-of-order execution
technique, which dates back as early as the 1960s, and
applied it to the design of a high-performance flash
controller. The result is a flash controller called Ozone (O3),
which has the following features:

1. The O3 controller exploits the multichip parallelism
inherent in flash memory in a much more effective
way than interleaving. In the O3 flash controller, the
only ordering constraints on the execution of multiple
flash operations are data dependencies between them.

2. 08 is completely decoupled from the FIL using a
packet-based interface, which greatly enhances
modularity and extensibility.

3. O3 is equipped with prioritized handling of flash
operations that allows different levels of service to
be provided to flash operations with high and low
priorities. This mechanism gives the FTL the facility
to control the rates at which different streams of
flash operations are serviced.

We have implemented a prototype of the O3 flash
controller using an FPGA-based development platform.
Our evaluation of the performance of this prototype shows
a 3 to 100 percent gain in throughput and a 46 to 88 percent
improvement in response time compared to interleaving.

The rest of this paper is organized as follows: In the next
section, we explain the basics of flash memory and review
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Fig. 1. Flash operations: (a) Erase block, (b) Program page, and
(c) Read page.

related work on the FTL, flash memory interleaving, and
out-of-order execution. In Section 3, we go on to present
three execution models that correspond to different extents
to which multichip parallelism can be exploited in a flash
storage system. In Section 4, we describe the O3 flash
controller architecture in detail. A prototype implementa-
tion of the O3 controller and the results of a performance
evaluation are presented in Section 5. Finally, we conclude
and discuss directions for future research in Section 6.

2 BACKGROUND

2.1 Flash Memory
Data on a NAND flash chip are organized into blocks, each
of which, in turn, consists of a number of pages. Each page
has a data part for user data and a spare part for metadata
associated with the user data, such as mapping and ECC
information. The size of the data part is a multiple of the
sector size (512 bytes), and the size of the spare part is
typically 16 bytes for each sector in the data part.
Throughout this paper, we assume that the block size is
512 KB, and that a block consists of 128 pages of 4 KB,
although our technique does not rely on this arrangement.
Fig. 1 shows the three flash operations: erase, program,
and read. Each of them has an initiation phase and a
completion phase, separated by a busy period. The length of
the busy period is the latency of the operation. For illustrative
purposes, latencies for the three operations are assumed to be
2 ms for erase, 800 us for program, and 50 s for read for the
remainder of the paper, which are typical foran MLC NAND
flash chip. Strictly speaking, however, the latencies are not
constants and may vary depending on the manufacturer,
page number, wear condition, and data being programmed
[5]. Similarly, we assume that data input/output is through
an 8-bit bus with a cycle time of 30 ns, a typical value in
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NAND flash memory nowadays, but emerging interfaces,
such as ONFI [6], Hyperlink NAND [7], and Toggle NAND
[8], aim to reduce this cycle time.

The erase block operation sets all the bits in a block to
one. As shown in Fig. 1a, its initiation phase is invoked by
an erase command, and then the chip becomes busy. When
this busy period, which is the latency of the operation, is
over, the chip becomes ready again. Then, the completion
phase begins and a status-check command is sent to the
chip, which reports any errors that might have occurred.

The program page operation, shown in Fig. 1b, writes
the data supplied to a page that have been erased in
advance. In its initiation phase, the data to be written to the
target page are transferred over the flash bus to an internal
page buffer in the flash chip, and then a program command
is sent, together with the address of the target page. Next,
the chip becomes busy for the period of the program
latency. During the subsequent completion phase, a status-
check command is issued in the same way as it is in the
erase operation.

The read page operation reads a page from flash
memory, as shown in Fig. 1c. During the initiation phase,
a read command is sent, together with the address of the
page. When the read latency is over and the chip becomes
ready again, data are read out from the flash chip during
the completion phase.

NAND flash memory is subject to bit-flipping errors, in
which one or more bits in a page are reversed between the
programming and reading of a page. These can be countered
up to a point by error-correction logic in hardware or
software. The manufacturers of NAND flash memory also
allow chips to have a limited number of bad blocks in order
to improve the yield. These bad blocks are identified by a
special mark at a designated location in each block. Even
good blocks have a limited lifetime, which necessitates a
technique called wear-leveling [4] that tries to even out the
number of erasures between the blocks in a chip.

2.2 Flash Translation Layer

The FTL hides the idiosyncrasies of flash memory from the
host computer and provides a storage device interface like
that used by HDDs. The most important role of the FTL is to
maintain a mapping between the logical sector addresses
used by the host computer and the physical block and page
addresses used in flash memory. This mapping can either
be at the page level [9], [10] or at the block level [11], [12],
[13], [14], [15]. Page-level mapping is more flexible, because
it allows a logical page to be mapped to any page in flash
memory. In a page-level mapping, the physical blocks in the
flash memory are organized into the same sort of log that
we find in a log-structured file system [16]. As data arrive,
they are written into the next free page at the end of the log.
When the number of free pages in the log drops below a
given threshold, garbage collection is triggered—a physical
block is selected as a victim and all the valid pages (i.e.,
those whose corresponding logical pages have not been
overwritten) in that block are copied to the end of the log.
After the copy operation, the victim block is erased and
added to the list of free space. The choice of block to be
garbage-collected is based on some form of cost-benefit
analysis [9], [10], [16], [17].
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Page-level mapping is flexible, but suffers from a
number of problems. First, it requires a large amount of
memory for the mapping table. For example, a 16 GB flash
storage system requires a 16 MB mapping table, if each
entry takes 4 bytes. However, designs such as DFTL [18]
reduce this overhead by maintaining the mapping table in
NAND flash while caching frequently accessed entries in
memory. Second, the overheads of garbage collection
increase sharply as the utilization (i.e., the proportion of
valid pages) increases, an effect which is well known in log-
structured file systems [10]. This effect can be mitigated by
over-provisioning the capacity such that the maximum
utilization can be bounded.

In a block-level mapping, each logical sector address is
divided into a logical block address and a sector address
within that logical block, and only the logical block address
is translated into a physical block address. Although block-
level mapping is free from the problems of page-level
mapping explained above, it requires extra flash operations
when only a few pages in a logical block are modified. For
example, when there is a request to write to a subset of the
pages in a logical block, an operation called a block-merge
[11] needs to be performed. During a block-merge opera-
tion, the logical block is remapped to a free physical block;
program operations are performed to the new physical
block for the pages involved in the write request; and all the
other pages in that block are copied from the old physical
block to the new one. After a block-merge operation, the old
physical block is erased and becomes a free block.

2.3 Exploitation of Multichip Parallelism in Flash
Memory

Various interleaving techniques have been used in the FTL
to exploit multichip parallelism in flash memory. Chang
and Kuo proposed chip-level interleaving to improve the
write performance in a flash storage system [19]. Although
it is focused on program operations, their technique can
easily be generalized to read and erase operations. Chip-
level interleaving increases the effective bandwidth of flash
operations by allowing several flash chips to operate in
parallel. However, the maximum bandwidth that can be
achieved by chip-level interleaving is still limited by the
flash bus bandwidth.

This bandwidth limitation can be overcome by extending
the interleaving across multiple flash buses [20], [21], [22].
Bus-level interleaving makes parallel flash operations
possible across chips on different flash buses. A set of flash
chips involved in both chip-level and bus-level interleaving
can be regarded as a single logical chip, sometimes called a
super-chip [23]. Concurrent operations on multiple super-
chips have been used in a block-mapping FTL [23] and also in
a page-mapping FTL [24]. In a block-mapping FTL, con-
current super-chip operations can be used to service host
read/write requests and to perform multiple block-merge
operations in parallel [23]. In addition, different super-chip
operations can be assigned different priorities. For example,
the super-chip operations that service host read requests can
be given a higher priority than those required to perform
background block-merge operations [23]. Concurrent super-
chip operations in a page-mapping FTL [24] can be used in an
analogous manner, for instance, to spread over several
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Fig. 2. Chip-level and bus-level interleaving: (a) chip-level interleaving,
and (b) bus-level interleaving.

super-chips flash read and program requests arising from
host read /write requests and garbage collection.

As Fig. 2 illustrates, super-chip operations are very
effective in servicing homogeneous flash operations with a
regular access pattern. However, they are less efficient in
servicing heterogeneous flash operations with an irregular
pattern, as we will see in Section 3.

Agrawal et al. [25] discussed architectural issues that arise
in designing flash storage systems, including mapping
granularities and the relative merits of interleaved and
parallel flash operations, and analyzed their effects on
performance using trace-driven simulations. Dirik and Jacob
[26] extended this study and performed a comprehensive
evaluation of various factors that affect the performance of a
flash storage system using traces of typical PC workloads.
The factors that they discussed include flash bus organiza-
tion (e.g., number of buses, bus speed, and bus width), chip-
level interleaving, and bus-level interleaving. A key finding
of these studies is that the high latencies of flash operations
are more critical to the performance of a storage system than
the speed of flash buses. This emphasizes the importance of
techniques that try to mitigate, or work around, flash
latencies, such as those used in the O3 flash controller
described in this paper.

There are commercially available SSDs and flash con-
trollers that are believed to exploit multichip parallelism. For
example, there is an SSD that provides in excess of 700 MB/s
for sequential I/O and 110,000 IOPS (input/output opera-
tions per second) for random I/O, with as many as 25 flash
buses [27]. There are also flash controllers available in form of
IP that support multiple flash chips and buses [28]. However,
the architecture and implementation details of these com-
mercial SSDs and flash controllers remain unknown; only
their interface specifications are publicly available.

2.4 Out-of-Order Execution and Consistency in
Storage Systems

Out-of-order execution is a well-known technique in the

computer systems area, which dates back to the 1960s. It
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involves techniques for reordering requests, so as to improve
performance while guaranteeing that the effect is the same as
it would be if the requests were executed sequentially.

A species of out-of-order execution idea called command
queuing is used in modern HDDs [29]. With command
queuing, read and write requests from the host computer are
reordered to minimize the seek time and rotational latency.
For example, SATA (Serial ATA) drives use a technique
called native command queuing (NCQ) that allows the
reordering of up to 32 outstanding requests [30]. SCSI drives
employ a similar technique called tagged command queuing
(TCQ) [31].

Command queuing is also beneficial to SSDs. By
exposing multiple concurrent host requests, it provides
more opportunities for SSDs to exploit multichip paralle-
lism in flash memory. This makes especially significant the
ability to service flash requests in parallel, as our O3 flash
controller is designed to do.

Command queuing in HDDs and SSDs also simplifies the
design of redundant array of independent disk (RAID) [32]
systems, which have some structural similarities with flash
controllers, in that multiple disk drives are controlled by a
single RAID controller and multiple flash chips are con-
trolled by a single flash controller. Since each HDD or SSD
in a RAID is itself capable of handling multiple requests
efficiently through reordering, the RAID controller can
concentrate on spreading incoming requests across as many
disks as possible, while each disk tries to process the requests
that it receives as fast as possible. In the flash context, the FTL
concentrates on extracting as many concurrent flash requests
as possible while the flash controller tries to process them as
fast as possible.

Request reordering, as well as write buffering in disk
drives [33] and also in the buffer cache of the operating
system [34], causes a file system consistency problem
when a system crash occurs. There have been two main
approaches to solving this problem, journaling [35] and
soft updates [36], [37], [38]. In the journaling approach, a
technique called write-ahead logging [35] is used, in which
modifications to the file system are recorded to a log
before they are made on the disk. This log is replayed
during recovery after a system crash to restore the file
system consistency. The correct recovery in write-ahead
logging requires ordering between write requests arising
from the recording to the log and those from the actual
modifications. In the soft update approach, write requests
from the file system are subject to ordering constraints so
as to avoid serious file system inconsistencies after a
system crash [36], [37]. Like journaling, soft updates are
intended to avoid the need for a costly file system scan,
such as a Unix fsck [39], when mounting a file system; a
background scan at a later time is sufficient to cure minor
inconsistencies such as leaked data blocks and inodes.

Both of the two approaches above (i.e., journaling and
soft updates) require a mechanism: 1) to specify ordering
among write requests generated by the file system, and 2) to
preserve that ordering up to the point when the write
requests are made durable in the disk drive. Recently, a
framework called Featherstitch [40] has been proposed to
provide such a mechanism in a modular manner. The
Featherstitch framework is general enough to implement
both journaling and soft updates; and yet it is practical
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enough to be applied to SATA and SCSI drives using
techniques such as a write-through mode or a forced unit
access (FUA) bit, both of which guarantee the durability of a
host write from the time at which the disk drive reports the
host write’s completion.

3 EXxEcuTION MODELS

In an HDD, parallelism is limited because it has only one
head assembly. On the other hand, a flash storage system
offers a lot of potential parallelism, since each flash chip in
the system can operate independently of the others. We will
now classify the approaches to exploiting multichip paralle-
lism in flash storage systems and define the sequential,
decoupled, and out-of-order execution models. These three
models impose different constraints on the execution of flash
operations by multiple chips and represent different extents
to which multichip parallelism is exploited.

In the sequential execution model, shown in Fig. 3a, flash
operations are executed in the order in which they arrive.
Thus, there is no overlap between flash operations, even
when they are directed to different chips. This model is
simple and resource-efficient, but its failure to make any use
of parallelism limits its application to FTLs that do not
generate any concurrent flash requests.

The decoupled execution model allows a partial overlap
between flash operations by decoupling the two phases (i.e.,
the initiation and completion phases) of each operation [41].
This execution model is a generalization of the various
interleaving techniques discussed in the previous section. In
decoupled execution, the initiation phase of one flash
operation can be followed immediately by the initiation of
the next operation, unless the latter is directed to a chip thatis
already busy with an earlier operation. In that case, the flash
operation cannot be initiated until the target chip becomes
idle, preventing the operations queuing behind it from being
initiated. For example, the erase operation addressed to chip
0in Fig. 3b cannot begin because the initiation of a preceding
program operation to chip 2 is blocked due to a chip conflict.
Decoupled execution also requires that the completion of
operations be strictly ordered. A flash operation cannot
complete if any of the flash operations ahead of it have been
initiated but are not yet complete. For example, the read
operation addressed to chip 1 in Fig. 3b cannot complete
because an earlier operation (in this case, the erase operation
to chip 0) is still active. Even though the decoupled execution
model allows only limited overlapping of flash operations, it
has the advantage of naturally preserving the in-order
completion semantics.

The drawbacks of decoupled execution motivate the out-
of-order execution model, in which there is no requirement
for the initiation and completion phases of flash operations
to be ordered. The only ordering constraints that remain are
due to data dependencies between flash operations directed
to the same flash chip. This relaxation of ordering
constraints greatly reduces the completion time of a typical
set of flash operations, as Fig. 3c illustrates.

Data dependencies between flash operations can easily
be determined by considering the set of pages that they
read or write. For example, Erase (b), an erase operation on
block b, is data-dependent on Erase (b") if and only if
b =10". Similarly, Erase (b) is data-dependent on Read (p), a
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read operation on page p, if and only if p is a page in
block b. Other data dependencies are determined similarly,
except for that between two flash program operations. We
would expect that the only data dependency between
Program (p) and Program (p’) to occur when p=yp’
However, since most flash chips require the pages within a
block be programmed in an ascending order, we create a
data dependency if p < p’.
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4 O3 FLASH CONTROLLER ARCHITECTURE

Fig. 4 shows the overall architecture of the O3 flash controller
within the context of a flash storage system that interacts with
a host computer. The host computer makes read and write
requests specified in terms of logical sectors to the flash
storage system. In flash storage systems, the FTL translates
host requests into flash requests. In addition to this
translation, the FTL needs to perform management tasks,
such as garbage collection and wear-leveling at any point in
time. Flash requests that originate from the same FTL task,
whether for host request servicing or internal management,
are identified as a stream throughout this paper.

The O3 flash controller services flash requests without
any intervention by the FTL. We take this hardware-
oriented approach because the flash latencies are relatively
short (in the range of a few tens or hundreds of
microseconds). If we involved the FTL in scheduling flash
operations, Amdahl’s law [42] dictates that we would be
introducing a serial bottleneck that would limit the
maximum speed-up from multiple chips. This contrasts
with the situation with HDDs, in which media access
latencies are very long (in the range of tens of milliseconds),
and thus scheduling requests in software is a sensible
option. The two different choices are analogous to different
choices used in optimizing different levels in a memory
hierarchy where the CPU cache is managed by hardware
and the virtual memory by software for a similar reason.

The FTL interacts with the O3 flash controller using a pair
of FIFO queues, called the inbound and outbound FIFOs. The
two FIFO queues provide buffering for requests and
responses, both formatted as packets, between the FTL and
the O3 controller. All the operations sent to the O3 flash
controller by the FTL, including configuration, reset, and
flash erase/program/read operations, use this packet-based
interface. Although this decoupling misses opportunities for
more intelligent scheduling of flash operations by the FTL,
we believe its benefits in terms of modularity and extensi-
bility outweigh the missed opportunities. For example,
programmers of the FTL can treat the controller as a black
box, relieving them of the burden of handling the low-level
details of flash operations. The decoupling also makes it
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658

feasible for the FTL to be executed remotely in the host
computer or even over a network. The packet-based interface
enhances not only modularity but also extensibility. For
example, an ECC encoder/decoder pair can be plugged
between the FTL and the flash controller in a manner
transparent to both.

When the O3 controller receives a request packet from the
inbound FIFO, a preprocessor decodes the request and
places it in a reservation station [43], where the request is
buffered while awaiting dispatch to the target flash chip by a
dynamic scheduler. In the case of a flash program request,
the associated data are temporarily stored in a data buffer in
the O3 controller for transfer to the target flash chip when the
program request is dispatched. This data buffer is also used
to store the data obtained by a flash read request before it is
placed in a response packet and delivered to the FTL.

The dynamic scheduler in the O3 controller dispatches
the flash requests buffered in the reservation station
separately to each chip, so that the dispatch of operations
to one chip is independent of the operations sent to other
chips. Each of the two phases of a flash operation is also
dispatched separately. When the target chip becomes ready,
the dynamic scheduler makes the initiation request for the
next flash operation addressed to that chip in the reserva-
tion station (I-REQ). After the flash latency is over and the
chip becomes ready again, it sends the completion request
(C-REQ) for that flash operation. In the period between the
I-REQ and the C-REQ), flash operations to other chips can be
handled concurrently by the dynamic scheduler.

Each phase (I-REQ or C-REQ) of a flash operation
involves the delivery of a command and/or the transfer of
data to or from the target chip over the flash bus. The low-
level flash controller in Fig. 4 encapsulates all the details of
low-level signaling needed for command delivery and data
transfer for a given flash bus, which improves the port-
ability of the O3 flash controller. This low-level controller is
also responsible for relaying the ready and busy status of
each chip to the dynamic scheduler. This information is
needed for correct and timely dispatch of flash requests in
the reservation station.

The dynamic scheduler also has a two-level prioritized
request handling mechanism to provide appropriate levels
of service to flash requests belonging to different request
streams. High-priority request streams are mainly used for
flash requests corresponding to pending host requests.
Low-priority streams contain less urgent flash requests,
such as those for garbage collection.

The postprocessor shown in Fig. 4 creates the illusion that
flash operations belonging to the same stream have been
completed in order by the use of a reorder buffer [43]. The
reorder buffer temporarily stores flash requests that have
been completed by the dynamic scheduler, and enforces in-
order completion among those belonging to the same request
stream. The postprocessor is also responsible for generating
the response packet for each flash request as it leaves the
reorder buffer. Outgoing response packets are placed into
the outbound FIFO for delivery to the FTL.

It should be noted that the out-of-order execution of
program operations directed to different chips can cause a
consistency problem if a system crash occurs. For this
reason, if a host write is in a write-through mode or the
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FUA bit is set, we assume that the FTL will not report the
completion until it receives the response packet for the final
program operation involved in the processing of the host
write. This enables safe recovery from a crash regardless
of whether the journaling approach or the soft update
approach is used.

In the following sections, we provide more details about
the key features of the O3 flash controller, which are its
packet-based interface, dynamic scheduler, and prioritized
request handling.

4.1 Packet-Based Interface

As we have already outlined, the O3 flash controller
provides a packet-based interface using the inbound and
outbound FIFOs. The FTL uses this interface to send
multiple streams of flash requests encoded in packets. There
are two types of packet used in this communication: control
packets are used for commands and status reports that have
no associated data, and data packets are used for data
transfers during the initiation phase of a program operation
or the completion phase of a read operation. The data
transferred include not only the data part of the requested
page, but also the spare part that contains metadata for the
page, such as mapping and ECC information.

In addition to the usual fields, such as opcode, priority,
and packet size, together with the bus, chip, block, and page
numbers, the header of both types of packet includes three
fields for interrupt processing: “IR” (Interrupt Request),
“IC” (Interrupt Condition), and “IP” (Interrupt Pending).
The IR field, which is set by the FTL, requests an interrupt,
and the IC field specifies the conditions attached to it. The
FTL uses an unconditional interrupt so that it can be
informed of the completion of a set of flash operations,
which can be detected economically because the completion
of a flash operation implies that all the operations ahead of
it in the same stream are also complete. Conditional
interrupts are used to notify the FIL of unusual events,
such as errors during erase or program operations. These
arrangements relieve the FIL of the burden of checking the
status of every flash operation. The IP field, which is set by
the O3 controller, indicates that an interrupt is pending in
response to a (conditional or unconditional) interrupt
requested by the FTL. The setting of the IP field triggers
an interrupt that leads to the execution of the corresponding
interrupt service routine within the FTL.

As an example, consider the sequence of packet
exchanges between the FTL and the O3 flash controller
for an erase operation. First, the FTL sends to the O3 flash
controller a sequence of two control packets, one containing
an erase command that will initiate the erase operation and
the other a status-check command to be executed on
completion. Second, the two packets are translated by the
preprocessor into the I-REQ and C-REQ of the erase
operation, respectively, and placed into the reservation
station. Finally, after completion of the erase operation, the
O3 controller sends a control packet to the FTL setting the
IP field if there is an error (provided that the FTL has been
asked to be interrupted when this occurs). The scenario for
a program operation is the same, except that the FTL
punctuates the two control packets with a data packet
containing the data for the target page. In this case, the first
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Fig. 5. Dynamic scheduling in the O3 flash controller.

control packet and the data packet correspond to the I-REQ,
and the second control packet to the C-REQ.

To perform a read operation, the FTL sends a control
packet containing a read command for initiation (I-REQ)
and a data packet for completion (C-REQ). In response, the
O3 flash controller sends a data packet that is the same as
the data packet from the FTL except that it now contains the
data read from flash memory.

A read operation has no intrinsic way of determining
whether the data that are read from flash memory are
correct, and so read operations do not have the facilities to
report errors that are included in the erase and program
operations. Thus, bit-flipping errors are handled separately.
An ECC encoder is placed before the inbound FIFO and an
ECC decoder after the outbound FIFO, making error
correction transparent to both the FTL and the O3 flash
controller. In the rare event, where bit-flipping errors are
too extensive to be corrected, the ECC decoder triggers an
interrupt by setting the IP field of the data packet involved
so that the FTL can take an appropriate action.

4.2 Dynamic Scheduler

We have seen how the FTL and the O3 flash controller
interact with each other using a packet-based interface.
Flash requests received over this packet-based interface are
decoded by the preprocessor and the corresponding I-REQs
and C-REQs are placed into the reservation station. Fig. 5
shows the dynamic scheduling of flash operations for the
out-of-order execution model. The O3 scheduler is general
enough to emulate the other two models if the structure of
the reservation station is changed, as shown in Fig. 6. The
single request queue shown in Fig. 6a suffices for sequential
execution but the decoupled model needs separate initia-
tion and completion queues, as shown in Fig. 6b. The
initiation queue ensures the ordering of I-REQs and the
completion queue ensures the ordering of C-REQs. For out-
of-order execution, a separate queue is needed for each
chip, as shown in Fig. 6c.

Scheduling for the sequential execution model is trivial:
when the target chip for the I-REQ or C-REQ at the head of

Request
queue

Initiation Completion
queue queue

Request
queues

C-REQ -REQ C-REQ CREQ

-REQ -REQ CREQ -REQ

CREQ I-REQ C-REQ CREQ | | C-REQ || C-REQ | | CREQ

-REQ -REQ C-REQ -REQ -REQ -REQ -REQ
Chip0  Chipt  Chip2  Chip3

(a) (b) (c)

Fig. 6. Reservation stations for the three execution models:
(a) sequential, (b) decoupled, and (c) out-of-order.

the (single) request queue is ready, the scheduler instructs
the issue unit to dispatch the request to the chip. The issue
unit fetches the control information about the request from
the reservation station and issues it to the low-level flash
controller responsible for the flash bus to which the target
chip is connected.

Decoupled execution is also straightforward. The sche-
duler dispatches a request using the issue unit when the
target chip becomes ready; this request is either the I-REQ
at the head of the initiation queue or the C-REQ at the head
of the completion queue. If both chips are ready at the same
time, then priority is given to the request that does not
involve data transfer so that the dispatch of the other
request is not delayed by a long data transfer time.

In the out-of-order execution, each chip is handled
separately in two stages. In the first stage, all pending
I-REQs and C-REQs that are addressed to idle chips and do
not involve data transfers are scheduled. In the second
stage, for each flash bus, the dynamic scheduler scans the
chips, starting where it left off during its last invocation for
this bus, to search for an idle chip with a pending I-REQ or
C-REQ with a data transfer. If there is such a request, the
dynamic scheduler schedules it and moves to the next flash
bus. When all the flash buses have been processed, the
dynamic scheduler suspends itself until it is invoked again,
either by completion of an I-REQ or a C-REQ, or by the
arrival of a new flash operation addressed to an idle chip.

This scheduling algorithm for out-of-order execution
has two aims. First, it tries to keep as many flash chips
active as possible by prioritizing requests without data
transfer. This helps prevent these faster requests from
being blocked by long data transfers. The requests that
involve data transfers are scheduled in a round-robin
manner to make fair use of the bus bandwidth among the
chips on the bus, and simplify implementation.

To maintain the ready/busy status of each flash chip that
it manages, the dynamic scheduler has a flash state
manager, which implements the finite-state machine shown
in Fig. 7. States can be changed by two types of event:
synchronous events triggered by the issue unit in response
to an I-REQ or a C-REQ dispatched by the dynamic
scheduler, and asynchronous events which occur when a
completed request causes a flash chip to become ready.

As an example, consider the sequence of transitions in the
flash state manager during a read operation. When the chip is
in the IDLE state, the scheduler dispatches the I-REQ. This
synchronous event triggers a transition to the BUSY state.
When the flash read latency is over, the chip signals that it is
ready again, which is an asynchronous event. The state
manager transitions to the DATA OUTPUT state, and the
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Fig. 7. Flash chip state transitions.

scheduler dispatches the C-REQ to the issue unit to transfer
data from the chip to complete the read operation. When the
data transfer is over, the finite-state machine returns to the
IDLE state. Note that this example explains the transitions
undergone by the target chip of a single flash operation, and
the remaining chips are likely to be undergoing transitions
by other concurrent flash operations.

Fig. 8 shows how a sequence of flash operations is
scheduled by the three different flash controllers corre-
sponding to the three execution models, leading to very
different completion times. In the figure, R; denotes a flash
read operation to chip i with request_id = j and P; a flash
program operation defined similarly.

4.3 Prioritized Request Handling

The O3 flash controller can prioritize the handling of
different streams of flash operations. Prioritized handling is
performed both at the chip level and at the bus level. At
the chip level, there are separate queues for high-priority
requests and low-priority requests, and requests from the
high-priority queue are always selected first.

Low-priority requests are further constrained at the bus
level by a mechanism that we call the flash reservation
protocol (F-RSVP), which provides different levels of service
to requests with high and low priorities. Reservation for
prioritization is achieved by limiting the number of chips
that can be occupied by low-priority requests at any given
time; we denote this number by F-RSVP(¢). This mechanism
only permits a low-priority request to be dispatched to an
idle chip when the number of chips currently occupied by
low-priority requests is less than F-RSVP(¢). As an anon-
ymous reviewer of this paper noted, a similar effect could be
obtained by a randomized algorithm, where low-priority
requests are delayed for a random amount time in a
probabilistic manner.

5 PROTOTYPE IMPLEMENTATION AND
PERFORMANCE EVALUATION

5.1 Experimental Setup

We implemented the sequential, decoupled, and O3 flash
controllers using an in-house development board, which
has a Xilinx Virtex 5 FPGA (XC5VEX130T) [44] with two
embedded PowerPC440 processors. The development
board also has five NVRAM slots, each supporting two
NAND flash buses. The flash bus is 8 bits wide and operates
at 32 MHz, and thus the maximum bandwidth of the
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flash bus is 32 MB/s. Table 1 gives the characteristics of the
flash chip we used in the experiments. The board is also
equipped with 128 MB mobile DDR memory, PCI-e host/
device interfaces, SATA interfaces, an Ethernet interface,
and various types of extension slot for future developments.
More details about the flash memory development board
can be found elsewhere [45].

We compared the performances of the sequential,
decoupled, and O3 controllers using the experimental setup
shown in Fig. 9. The processor subsystem in the figure
consists of one PowerPC440 processor in the FPGA and
various peripherals that we implemented using the Xilinx
ISE and EDK tools [46]. Flash request packets were prepared
offline, and then fetched from the mobile DDR memory by
the request forwarder, which forwards them to the inbound
FIFO for processing by the flash controller. The packet
monitor connected to the request forwarder records the
timestamps of all the inbound and outbound packets in real-
time using a timer circuit and stores the timestamps in its
local SRAM. These timestamps are later used to determine
throughput and response time. In the experiments, we ran
the PowerPC440 processor at 200 MHz and the DDR memory
at 133 MHz. Table 2 summarizes the utilizations of different
types of FPGA resource by the three flash controllers. The
O3 controller uses about 25 percent more resource than the
decoupled controller, which, in turn, uses about twice as
much resource as the sequential controller.

5.2 Performance Evaluation (Synthetic Workloads)
We built a synthetic workload generator that can generate
arbitrary mixes of erase, program, and read operations, and
used it to assess the performance of the three flash
controllers with various configurations and a wide range
of workloads. Results using real workload traces will be
given in Section 5.3.

5.2.1 Effects of Workload Variation

Fig. 10a compares the performance of the three controllers
with different mixes of erase (E), program (P), and read (R)
operations. In this experiment, we used eight flash chips on
a single bus. The throughput of the O3 controller is 3 to
100 percent greater than that of the decoupled controller,
and 23 to 443 percent greater than that of the sequential
controller. Moreover, the performance of the O3 controller is
largely insensitive to the workload type and its throughput
approaches the maximum flash bus bandwidth of 32 MB/s.
The performance of the other two controllers is more
dependent on the composition of the workload. For
example, when there are a large number of low-latency
read operations, even the sequential controller performs
reasonably well. However, introducing more erase and
program operations widens the performance gap between
the O3 controller and the other two controllers. In the
extreme case, where the workload does not contain any read
operation and consists only of erase and program opera-
tions, the O3 controller performs almost five times better
than the sequential controller, and twice as well as the
decoupled controller. These results illustrate the effective-
ness of relaxing the ordering constraints between flash
operations in the O3 controller to hide long latencies.
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Fig. 8. Timing diagrams for a sequence of flash operations with three execution models: (a) sequential execution, (b) decoupled execution, and

(c) out-of-order execution.

Fig. 10b shows the distribution of response times when
the ratio of erase, program, and read operations is 1:128:128,
modeling a scenario in which each page in a block is
programmed and read once, on average, after the block is
erased. The average response time of the O3 controller for
the different types of operation is 46 to 88 percent better
than that of the decoupled controller, and 70 to 94 percent
better than that of the sequential controller.

5.2.2 Effects of the Number of Flash Buses and the
Number of Chips per Bus

To assess the scalability of the three controllers, we performed
experiments in which we varied the number of flash buses
and also the number of chips on each bus. The results are
shown in Fig. 11a for Erase:Program:Read = 1 : 128 : 128 and
in Fig. 11b for Erase: Program:Read = 1:128:512. As
expected, the throughput of the sequential controller does
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TABLE 1
Flash Memory Parameters

Parameters Value

Page read 56 us - 62 us
Page program 524 ps - 1062 ps
Block erase 2 ms

/O cycle time 30 ns (min)

Page size 4KB + spare area
Block size 128 pages

not increase with either the number of buses or the number of
chips on each bus.

The gap in performance between the O3 controller and
the decoupled controller increases as we use more flash
buses and chips. The O3 controller achieves throughputs of
over 90 percent of the maximum, regardless of the number
of buses when there are eight chips or more on each bus.

5.2.3 Effects of Prioritized Handling

To assess the effects of prioritized request handling on
performance in a realistic setting, we prepared four
different streams of flash requests. The first is a high-
priority stream that contains only read requests emulating
the processing of host read requests by the FTL. The
remaining three low-priority streams contain a mixture of
erase, program, and read requests emulating host write
processing and garbage collection inside the FTL.

We also varied the value of F-RSVP(¢), which is the
maximum number of chips that can be occupied in
servicing low-priority requests at the same time. Fig. 12
shows that, as F-RSVP({) decreases, responses to high-
priority requests gradually become faster and responses to
low-priority requests become slower, as we would expect.

Fig. 13 shows the throughputs of the three controllers for
different values of F-RSVP(¢). As expected, the throughput
of the sequential controller is the same regardless of
F-RSVP(¥). For the decoupled and O3 controllers, the total
throughput by both high-priority and low-priority requests
naturally decreases as we decrease F-RSVP({) (remember
that a smaller F-RSVP(¢) value increases the probability that
a low-priority request is prevented from being dispatched
to a chip even in the case the chip is idle).
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—> FIFO interface

‘ > Timestamp

Packet
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DUT (Device Under Test) }»
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Fig. 9. Experimental setup.
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TABLE 2
FPGA Resource Utilization by the Three Flash Controllers

Name Sequential Decoupled 03
Slice-registers 2,833(3%) 5,021(6%) 6,253(7%)
Slice-LUTs 3,897(4%) 8,288(8%) 11,453(13%)
Occupied slices 1,428(6%) 3,067(14%) 4,292(20%)
Bonded I/O 311(37%) 311(37%) 311(37%)
Block RAM 40(13%) 40(13%) 59(19%)

When low-priority requests can only use one chip at a
time, both the decoupled and O3 controllers perform as
badly as the sequential controller, because the low-priority
requests have to be executed sequentially. This increases the
backlog of low-priority requests, filling buffers in the
controller, including those in the reservation station. This
build-up of full buffers can even reach the inbound FIFO,
which blocks high-priority requests before they have even
entered the controller. This suggests the need for a flow
control mechanism in the FTL to limit the number of
outstanding low-priority requests so that they do not block
the processing of high-priority requests.

5.3 Performance Evaluation (PCMark05)

We also conducted experiments using traces obtained from
running the PCMark05 benchmark [47], which emulates
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Fig. 10. Performance of the sequential, decoupled, and O3 controllers
with different workloads: (a) throughput, and (b) response times.
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workloads from a typical PC environment. This benchmark
has five components: XP Start-up, Application Loading, General
Usage, Virus Scan, and File Write. XP Start-up replays read and
write requests made during a Windows XP boot-up. About
90 percent of its requests are for reading and 10 percent for
writing. Application Loading contains host requests made
when application programs, such as Microsoft Word, Adobe
Acrobat Reader, and Mozilla Internet Browser, are launched
and terminated. It consists of 83 percent reads and 17 percent
writes. General Usage contains host requests from application
programs, such as Microsoft Word, Winzip, Winamp,
Microsoft Internet Explorer, and Windows Media Player. It
has 60 percent reads and 40 percent writes. Virus Scan
contains host requests for scanning 600 MB of files for
viruses. As expected, its requests are mostly (99.5 percent)
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Fig. 13. Effects of prioritized request handling on throughput.

reads. Finally, File Write contains the host requests for
writing 680 MB of files, and does not contain any read
requests.

To obtain traces of the flash requests generated during
the execution of the PCMark05 benchmark, we implemen-
ted a parallelized page-mapping FTL similar to the one
explained in [24]. For a host write request, the FIL
determines the number of pages to be programmed from
the size of the host request and the flash page size. It then
randomly selects the chips to be programmed and generates
program requests to these chips after updating the mapping
table. For a host read request, the FTL looks up the mapping
table and generates a set of flash read requests.

Fig. 14a gives the throughput for the five component
benchmarks along with the ratio between erase, program,
and read operations in each. These results are similar to
those in Fig. 10a. For example, the result for File Write,
which contains only erase and program operations is almost
identical to that in Fig. 10a for E : P = 1 : 128. Similarly, the
result for Virus Scan, in which most requests are reads, is
very similar to that for the “R only” case in Fig. 10a.

The distribution of response times is also very similar.
For example, the response times shown in Fig. 14b for
General Usage with Erase:Program:Read = 1:126.3 : 110.75
are almost the same as those in Fig. 10b with Erase:Pro-
gram:Read = 1:128:128. Overall, the results in Fig. 14
confirm that the performance of the three controllers is most
affected by the ratio between the number of erase, program,
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Fig. 12. Effects of prioritized request handling on response times: (a) response times of high-priority requests, and (b) response times of low-priority

requests.
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Fig. 14. Performance results from PCMarkO05 traces: (a) throughput, and
(b) response time.

and read operations in the workload. They also confirm our
earlier observation that the performance difference between
the O3 controller and the other two controllers is more
noticeable when there are more long-latency erase and
program operations than short-latency read operations.

To assess the performance impact of the degree of
randomness in selecting target chips for flash operations,
we varied the degree of randomness with Erase:Program:
Read =1:128:128. When there is no randomness (0 per-
cent), the target chip is selected in a round-robin manner.
Then, we progressively expanded the set of candidate chips
for each flash operation, choosing at random within that set.
The size of the set, as a proportion of the total number of
chips, is taken to be the degree of randomness. When this
reaches 100 percent, we are selecting chips in the same way
as we did for results in Fig. 14. This experiment with
different degrees of randomness was designed to model the
separate streams of flash operations that are generated by
the FTL in processing host reads and writes, in garbage-
collection, and in wear-leveling. We note that the merger of
streams of operations from several processes will exhibit a
degree of randomness, even though each stream is actually
selecting its target chips in a round-robin manner.

The results in Fig. 15 show that the O3 controller always
performs better than the other two controllers, and its
performance is largely insensitive to the degree of random-
ness. On the other hand, the performance of the decoupled
controller is adversely affected by randomness; even if the
degree of randomness is only 20 percent, its performance is
less than 75 percent of that of the O3 controller.
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6 CONCLUSIONS

We have presented a flash controller called Ozone (O3) that
executes multiple flash operations out of order. The O3 flash
controller has the following properties: First, data depen-
dencies between flash operations are the only ordering
constraints on their concurrent execution, enabling much
better exploitation of multichip parallelism than interleav-
ing. Second, it presents a packet-based interface to flash
management software, such as the FTL (flash translation
layer), enhancing its modularity and extensibility. Third, it
provides prioritized handling of flash operations, allowing
appropriate levels of service to be given to different streams
of flash operations.

Evaluation using an FPGA implementation of the O3
flash controller showed that its performance is between
three percent and 100 percent better in terms of throughput
and between 46 percent and 88 percent better in terms of
response time than interleaving, for the workloads that we
considered.

The O3 controller can free programmers of flash
management software from the burden of handling low-
level details of flash operations to concentrate on extracting
as many parallel streams of flash operations as possible. We
are currently exploring different approaches to parallelizing
flash management software to realize the full potential of
the O3 controller.

ACKNOWLEDGMENTS

The authors thank associate editor Professor Ethan L. Miller
and the anonymous reviewers for their very detailed and
helpful feedback. This work was supported by the National
Research Foundation of Korea (NRF) grant funded by the
Korean government (MEST) (No. 2010-0015149). ICT at
Seoul National University provided research facilities for
this study. Hyeonsang Eom is the corresponding author for
this paper.

REFERENCES

[1] C.-G. Hwang, “Nanotechnology Enables a New Memory
Growth Model,” Proc. IEEE, vol. 91, no. 11, pp. 1765-1771,
Nov. 2003.



NAM ET AL.: OZONE (O3): AN OUT-OF-ORDER FLASH MEMORY CONTROLLER ARCHITECTURE

(2]
(3]

(4

(5]

o]

(7]

8]

]
(10]

(11]

[12]

(13]

(14]

[15]

(16]

(7]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

G.E. Moore, “Cramming More Components onto Integrated
Circuits,” Electronics, vol. 38, no. 8, pp. 114-117, Apr. 1965.
Samsung Electronics, Datasheet: 1G x 8 Bit/2G x 8 Bit NAND
flash memory, http://www.datasheetcatalog.org/datasheets2/
12/1244179_1.pdf, Mar. 2005.

E. Gal and S. Toledo, “Algorithms and Data Structures for Flash
Memories,” ACM Computing Surveys, vol. 37, no. 2, pp. 138-163,
2005.

LM. Grupp, A.M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P.H. Siegel, and ]J.K. Wolf, “Characterizing Flash Memory:
Anomalies, Observations, and Applications,” Proc. 42nd Ann.
IEEE/ACM Int'l Symp. Microarchitecture, 2009.

ONFI, ONFI 2.3 Specification, http://onfi.org/specifications/,
Aug. 2010.

R. Schuetz, O. HakJune, K. Jin-Ki, P. Hong-Beom, S.A. Przybylski,
and P. Gillingham, “HyperLink NAND Flash Architecture for
Mass Storage Applications,” Proc. 22nd IEEE Non-Volatile Semi-
conductor Memory Workshop, pp. 3-4, 2007.

Samsung Electronics, Toggle DDR NAND Flash, http://
www.samsung.com/global /business/semiconductor/products/
flash/Products_Toggle_ DDR_NANDFlash.html, 2010.

A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash-Memory
Based File System,” Proc. USENIX Ann. Technical Conf., 1995.

M. Wu and W. Zwaenepoel, “ENVy: A Non-Volatile, Main
Memory Storage System,” Proc. Sixth Int’l Conf. Architectural
Support for Programming Languages and Operating Systems, 1994.

J. Kim, J.M. Kim, S.H. Noh, S.L. Min, and Y. Cho, “A Space-
Efficient Flash Translation Layer for Compactflash Systems,” IEEE
Trans. Consumer Electronics, vol. 48, no. 2, pp. 366-375, May 2002.
A. Ban and R. Hasharon, “Flash File System Optimized for Page-
Mode Flash Technologies,” United States Patent, no. 5,637,425,
Aug. 1999.

J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A Superblock-Based Flash
Translation Layer for NAND Flash Memory,” Proc. Sixth ACM and
IEEE Int’l Conf. Embedded Software, 2006.

S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J.
Song, “A Log Buffer-Based Flash Translation Layer Using Fully-
Associative Sector Translation,” ACM Trans. Embedded Computing
Systems, vol. 6, no. 3, July 2007.

C.-H. Wu and T.-W. Kuo, “An Adaptive Two-Level Management
for the Flash Translation Layer in Embedded Systems,” Proc.
IEEE/ACM Int'l Conf. Computer-Aided Design, 2006.

M. Rosenblum and J.K. Ousterhout, “The Design and Implemen-
tation of a Log-Structured File System,” ACM Trans. Computer
Systems, vol. 10, no. 1, pp. 26-52, 1992.

M.-L. Chiang, P.C.H. Lee, and R.-C. Chang, “Using Data
Clustering to Improve Cleaning Performance for Flash Memory,”
Software Practice and Experience, vol. 29, no. 3, pp. 267-290, 1999.
A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A Flash Translation
Layer Employing Demand-Based Selective Caching of Page-Level
Address Mappings,” Proc. 14th Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, 2009.

L.-P. Chang and T.W. Kuo, “An Adaptive Striping Architecture
for Flash Memory Storage Systems of Embedded Systems,” Proc.
Eighth Real-Time and Embedded Technology and Applications Symp.,
2002.

C. Park, P. Talawar, D. Won, M. Jung, J. Im, S. Kim, and Y. Choi,
“A High Performance Controller for NAND Flash-Based Solid
State Disk (NSSD),” Proc. 21st IEEE Non-Volatile Semiconductor
Memory Workshop, 2006.

J.-U. Kang, J.-S. Kim, C. Park, H. Park, and J. Lee, “A Multi-
Channel Architecture for High-Performance NAND Flash-Based
Storage System,” |. Systems Architecture, vol. 53, no. 9, pp. 644-658,
2007.

J.H. Yoon, E.H. Nam, Y.J. Seong, H. Kim, B.S. Kim, S.L. Min, and
Y. Cho, “Chameleon: A High Performance Flash/FRAM Hybrid
Solid State Disk Architecture,” IEEE Computer Architecture Letters,
vol. 7, no. 1, pp. 17-20, Jan.-June 2008.

Y.J. Seong, E.H. Nam, J.H. Yoon, H. Kim, J.-Y. Choi, S. Lee, Y.H.
Bae, J. Lee, Y. Cho, and S.L. Min, “Hydra: A Block-Mapped
Parallel Flash Memory Solid-State Disk Architecture,” IEEE Trans.
Computers, vol. 59, no. 7, pp. 905-921, July 2010.

AM. Caulfield, LM. Grupp, and S. Swanson, “Gordon: Using
Flash Memory to Build Fast, Power-Efficient Clusters for Data-
Intensive Applications,” Proc. Architectural Support for Program-
ming Languages and Operating Systems, 2009.

(23]

(26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]
(34]

(33]

[30]

[37]

(38]

(39]

(40]

(41]

(42]

(43]
(44]

(45]

[46]

(47]

665

N. Agrawal, V. Prabhakaran, T. Wobber, ]J.D. Davis, M. Manasse,
and R. Panigrahy, “Design Tradeoffs for SSD Performance,” Proc.
USENIX Ann. Technical Conf., 2008.

C. Dirik and B. Jacob, “The Performance of PC Solid-State Disks
(SSDs) as a Function of Bandwidth, Concurrency, Device
Architecture, and System Organization,” Proc. 36th Int’'l Symp.
Computer Architecture, 2009.

FUSION IO, ioDrive datasheet, http://www.fusionio.com/
images/data-sheets/iodrive_data_sheet.pdf, 2008.

Denali, NAND Flash Controller IP, http://www.denali.com/en/
products/databahn_flash jsp, 2010.

Intel, Serial ATA II Native Command Queuing Overview, http://
www.intel.com/assets/pdf/whitepaper/252664.pdf, 2003.

K. Grimsrud and H. Smith, Serial ATA Storage Architecture and
Applications. Intel Corporation, 2007.

Int'l] Committee for Information Technology Standards (INCITS),
SCSI Architecture Model-3 (SAM-3) T10 Project 1561-D, Revision 14.
pp- 402-2005,T10 Technical Committee, Sept. 2004.

D.A. Patterson, G. Gibson, and R.H. Katz, “A Case for Redundant
Arrays of Inexpensive Disks (RAID),” Proc. ACM SIGMOD Int'l
Conf. Management of Data, 1988.

C. Ruemmler and J. Wilkes, “An Introduction to Disk Drive
Modeling,” Computer, vol. 27, no. 3, pp. 17-28, Mar. 1994.

M.J. Bach, The Design of the UNIX Operating System. Prentice-Hall,
1986.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: A Transaction Recovery Method Supporting Fine-Gran-
ularity Locking and Partial Rollbacks Using Write-Ahead Log-
ging,” ACM Trans. Database Systems, vol. 17, no. 1, pp. 94-162, 1992.
G.R. Ganger, M.K. McKusick, C.A.N. Soules, and Y.N. Patt, “Soft
Updates: A Solution to the Metadata Update Problem in File
Systems,” ACM Trans. Computer Systems, vol. 18, no. 2, pp. 127-
153, 2000.

M.K. McKusick and G.R. Ganger, “Soft Updates: A Technique for
Eliminating Most Synchronous Writes in the Fast Filesystem,”
Proc. USENIX Ann. Technical Conf., 1999.

M.L Seltzer, G.R. Ganger, M.K. McKusick, K.A. Smith, C.A.N.
Soules, and C.A. Stein, “Journaling versus Soft Updates: Asyn-
chronous Meta-Data Protection in File Systems,” Proc. USENIX
Ann. Technical Conf., 2000.

M.K. McKusick, W.N. Joy, S.J. Leffler, and R.S. Fabry, “Fsck—The
UNIX File System Check Program,” Unix System Manager’s
Manual-4.3 BSD Virtual VAX-11 Version, 1986.

C. Frost, M. Mammarella, E. Kohler, A.D.I. Reyes, S. Hovsepian,
A. Matsuoka, and L. Zhang, “Generalized File System Dependen-
cies,” Proc. ACM Symp. Operating Systems Principles, 2007.

B. Kim, E.H. Nam, Y.J. Seong, H.]J. Min, and S.L. Min, “Efficient
Flash Memory Read Request Handling Based on Split Transac-
tions,” Proc. Int’l Workshop Software Support for Portable Storage,
2009.

GM. Amdahl, “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities,” Proc. AFIPS
Spring Joint Computer Conf., 1967.

D.A. Patterson and J.L. Hennessy, Computer Architecture: A
Quantitative Approach, fourth ed. Morgan Kaufmann, 2007.
Xilinx, Virtex-5 FPGA family, http://www xilinx.com/products/
virtex5/index.htm, 2010.

E.H. Nam, K.S. Choi, J.-y. Choi, HJ. Min, and S.L. Min,
“Hardware Platforms for Flash Memory/NVRAM Software
Development,” ]. Computing Science and Eng., vol. 3, no. 3,
pp- 181-194, 2009.

Xilinx, Design tools, http://www .xilinx.com/tools/designtools.
htm, 2010.

Futuremark Corporation, PCMark05 whitepaper, http://www.
futuremark.com./, 2010.

Eyee Hyun Nam received the BS degree in
electrical engineering from Seoul National Uni-
versity, Korea, in 1998, where he is working
toward the PhD degree. He worked at Comtec
System, Seoul, where he developed network
devices from 1999 to 2002. He was a senior
engineer in the R & D Center at Future System,
Seoul, from 2003 to 2004. His research interests
include computer architecture, embedded sys-
tems, file systems, and storage systems.



666

Bryan Suk Joon Kim received the BS degree
in electrical engineering and computer science
from the University of California, Berkeley, in
2006, and the MS degree in computer science
and engineering from Seoul National Univer-
sity, Korea, in 2009. He is working toward the
PhD degree from the University of California,
San Diego. He was an application engineer at
n & k Technology from 2006 to 2007. His
research interests include computer architec-
ture, memory systems, and storage systems.

Hyeonsang Eom received the BS degree in
computer science and statistics from Seoul
National University (SNU), Korea, in 1992, and
the MS and PhD degrees in computer science
from the University of Maryland at College Park,
in 1996 and 2003, respectively. Since 2005, he
has been an assistant professor in the School of
Computer Science and Engineering at SNU,
where he has been a faculty member. He was a
senior engineer in the Telecommunication R & D
Center at Samsung Electronics, Korea, from 2003 to 2004. His research
interests include high performance storage systems, distributed
systems, cloud computing, energy efficient systems, fault tolerant
systems, digital rights management, and information dynamics. He is
a member of the IEEE and the ACM.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO.5, MAY 2011

Sang Lyul Min received the BS and MS
degrees in computer engineering, both from
Seoul National University, Seoul, in 1983 and
1985, respectively, and the PhD degree in
computer science from the University of Wa-
shington, Seattle, in 1989. He is currently a
professor in the School of Computer Science
and Engineering, Seoul National University,
Korea. He has served on a number of program
committees of technical conferences and work-
shops, including the International Conference on Embedded Software
(EMSOFT), the Real-Time Systems Symposium (RTSS), and the Real-
Time Technology and Applications Symposium (RTAS). He was also a
member of the editorial board of the IEEE Transactions on Computers.
His research interests include embedded systems, computer architec-
ture, real-time computing, and parallel processing. He is a member of
the IEEE and the ACM.

|

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



